Refinar búsqueda
Resultados 1-10 de 1,419
Trace elements in vegetables grown in an industrial area in relation to soil and air particulate matter.
1996
Voutsa D. | Grimanis A. | Samara C.
Interspecific differences in manganese levels in freshwater bivalves.
1989
Tevesz M.J.S. | Matisoff G. | Frank S.A. | McCall P.L.
Assessment of the interactions of metals and nitrilotriacetic acid in soil/sludge mixtures.
1987
Garnett K. | Kirk P.W.W. | Lester J.N. | Perry R.
On the bonding of manganese, copper and cadmium to peptides of the xylem sap of plant roots.
1991
Przemeck E. | Haase N.U.
Effects of soil fluoride pollution on wheat growth and biomass production, leaf injury index, powdery mildew infestation and trace metal uptake
2022
Ahmad, Muhammad Nauman | Zia, Afia | van den Berg, Leon | Ahmad, Yaseen | Mahmood, Rashid | Dawar, Khadim Muhammad | Alam, Syed Sartaj | Riaz, Muhammad | Ashmore, Mike
Fluoride (F) is an emerging pollutant that originates from multiple sources and adversely affects plant growth and nutrient bioavailability in soil. This greenhouse study investigated the effects of soil F (0, 10, 20, 50, 100, 200 mg kg⁻¹) on morpho-physiological growth characteristics of wheat, soil F contents, and bioavailability and uptake of F, phosphorus (P), sulphur (S), potassium (K), calcium (Ca), magnesium (Mg), aluminium (Al), iron (Fe), manganese (Mn), silicon (Si) and zinc (Zn) by wheat. Higher F significantly reduced plant height and number of leaves particularly at early growth stages and increased visible leaf injury index. Powdery mildew infestation coincided with leafy injury and was higher in elevated soil F treatments. Fluoride treatments (>50 mg kg⁻¹) significantly increased water (H₂O)- and calcium chloride (CaCl₂)-extractable F contents in soil. Water-extractable soil F contents from soil in all concentration were higher than CaCl₂-extractable F. This increased F bioavailability resulted in significantly higher F uptake and accumulation in live leaves, dead leaves and grains of wheat which followed order: live leaves > dead leaves > grains. Leaf injury index and number of dead leaves correlated significantly positively with soil H₂O- and CaCl₂-extractable F contents. Patterns of nutrient (P, K, S) and trace metals (Al, Ca, Mg, Fe, Mn, Si, Zn) varied significantly with F concentrations and between live and dead leaves, and grains except for Zn. Dead leaves generally had higher nutrients and trace metals than live leaves and grains. Fluoride contents in live leaves, dead leaves and grains showed positive correlations with nutrient elements but negative with trace metals. Number of dead leaves correlated negatively with Al, Ca, Fe, Mg, S and Si but positively with P and Zn contents in dead leaves whereas leaf injury index showed positive correlation with Fe, K, P, Si, Zn, S but negative with Al, Ca and Mg contents. These observations provided evidence of higher F uptake and associated impairment in nutrient and trace metal accumulation which caused leaf injury accompanied by powdery mildew infestation in wheat. However, further research in the region is required to confirm the relationship between F pollution, leaf injury and trace metal accumulation in crops under field conditions.
Mostrar más [+] Menos [-]Ni accumulation and effects on a representative Cnidaria - Exaiptasia pallida during single element exposure and in combination with Mn
2022
Iyagbaye, Louis | Reichelt-Brushett, Amanda | Benkendorff, Kirsten
Nickel (Ni) and manganese (Mn) are well known for the production of steel and alloys and are commonly found co-occurring in Ni ores. They are metals of environmental concern and contamination in the marine environment is problematic single exposures and in combination. Several studies have documented the effects of single metal exposure on the model anemone E. pallida, but research on the effects of metal mixtures is far less common. This novel study assesses the accumulation and stress effects of Ni and Mn over a 12-d exposure period. E. pallida were exposed in two separate experiments; Ni alone and Ni in combination with Mn, to assess accumulation, along with any effect on the density of symbionts and anemone tentacle length. Anemones were transferred to ambient seawater to assess depuration and recovery over 6 d. Anemone tissue accumulated Ni at a magnitude of five times higher in a mixture of 0.5 mg Ni/L with 2.5 mg Mn/L compared to the same concentration in a single Ni exposure experiment. In both experiments, Ni and Mn preferentially accumulated in the Symbiodinium spp. compared to the anemone tissue, but Ni depuration was more rapid in the mixture than Ni alone exposure. This study reveals a significant reduction in anemone Symbiodinium spp. density after exposure to Ni and Mn mixtures, but not with Ni exposure alone. A significant dose-dependent reduction in tentacle length was observed in anemones after 12 d of the Ni exposure both with and without Mn. The estimated sublethal concentration that causes tentacle retraction in 50% of test anemones (EC50) by Ni was 0.51 (0.25–0.73) mg/L, while in combination with Mn the EC50 was 0.30 mg Ni/L (confidence limits not calculatable). The present data reveals the importance of testing metal effects in combination before establishing safe limits for marine invertebrates.
Mostrar más [+] Menos [-]Potentially toxic elements have adverse effects on moss communities in the manganese mines of Southern China
2022
Sheng, Xu | Zhaohui, Zhang | Zhihui, Wang
This study investigated the distribution of moss species, physiological parameters (superoxide dismutase, peroxide, catalase, and total chlorophyll), and concentrations of potentially toxic elements (Mn, Cr, Zn, Cu, Pb, and Cd) in moss communities and topsoil at the Huayuan manganese mine, Xiangjiang manganese mine, and Nancha manganese mine (Southern China). Partial least squares path modeling (PLS-PM) was then performed to determine the relationship between the indicators. Cd, Mn, and Zn were the main topsoil pollutants, followed by Pb, Cr, and Cu. A total of 73 moss species, comprising 31 genera from 17 families, and 8 community functional groups were identified. The most dominant families were Pottiaceae (30.14%) and Bryaceae (21.92%). PLS-PM revealed that increasing topsoil Mn, Cr, Zn, Cu, Pb, and Cd significantly reduced species diversity and functional diversity. These potentially toxic elements in the topsoil impeded vegetation growth by deteriorating soil conditions and subsequently altering the microenvironment of the moss communities. The community-weighted means demonstrated that functional traits of turfs and warty leaves were the adaptation of the moss communities to an increasingly dry and exposed microenvironment. Moss species with curly and narrow leaves were used to reduce contact with particulate pollutants. PLS-PM also indicated that Mn, Cr, Pb, and Cd may have a detrimental effect on superoxide dismutase, peroxide, catalase, and total chlorophyll, although further validation studies are needed.
Mostrar más [+] Menos [-]Laccase production by Pleurotus ostreatus using cassava waste and its application in remediation of phenolic and polycyclic aromatic hydrocarbon-contaminated lignocellulosic biorefinery wastewater
2022
Kumar, Vaidyanathan Vinoth | Venkataraman, Swethaa | Kumar, P Senthil | George, Jenet | Rajendran, Devi Sri | Shaji, Anna | Lawrence, Nicole | Saikia, Kongkona | Rathankumar, Abiram Karanam
The treatment of contaminants from lignocellulosic biorefinery effluent has recently been identified as a unique challenge. This study focuses on removing phenolic contaminants and polycyclic aromatic hydrocarbons (PAHs) from lignocellulosic biorefinery wastewater (BRW) applying a laccase-assisted approach. Cassava waste was used as a substrate to produce the maximum yield of laccase enzyme (3.9 U/g) from Pleurotus ostreatus. Among the different inducers supplemented, CuSO₄ (0.5 mM) showed an eight-fold increase in enzyme production (30.8 U/g) after 240 h of incubation. The catalytic efficiency of laccase was observed as 128.7 ± 8.47 S⁻¹mM⁻¹ for syringaldazine oxidation at optimum pH 4.0 and 40 °C. Laccase activity was completely inhibited by lead (II) ion, mercury (II) ion, sodium dodecyl sulphate, sodium azide and 1,4 dithiothretiol and induced significantly by manganese (II) ion and rhamnolipid. After treating BRW with laccase, the concentrations of PAHs and phenolic contaminants of 1144 μg/L and 46160 μg/L were reduced to 96 μg/L and 16100 μg/L, respectively. The ability of laccase to effectively degrade PAHs in the presence of different phenolic compounds implies that phenolic contaminants may play a role in PAHs degradation. After 240 h, organic contaminants were removed from BRW in the following order: phenol >2,4-dinitrophenol > 2-methyl-4,6-dinitrophenol > 2,3,4,6-tetrachlorophenol > acenaphthene > fluorine > phenanthrene > fluoranthene > pyrene > anthracene > chrysene > naphthalene > benzo(a)anthracene > benzo(a)pyrene > benzo(b)fluoranthene > pentachlorophenol > indeno(1,2,3-cd)pyrene > benzo(j) fluoranthene > benzo[k]fluoranthène. The multiple contaminant remediation from the BRW by enzymatic method, clearly suggests that the laccase can be used as a bioremediation tool for the treatment of wastewater from various industries.
Mostrar más [+] Menos [-]Yielding hydroxyl radicals in the Fenton-like reaction induced by manganese (II) oxidation determines Cd mobilization upon soil aeration in paddy soil systems
2022
Wang, Meng | Liu, Yongbing | Shi, Huading | Li, Shanshan | Chen, Shibao
As a redox-sensitive element, manganese (Mn) plays a critical role in Cd mobilization, especially in paddy soil. In an anoxic environment, the precipitation of Mn(II)-hydroxides specifically favors Cd retention, while draining the paddy fields results in substantial remobilization of Cd. However, how the change in Mn redox states during the periodical transit of anoxic to oxic systems affects Cd mobility remains unclear. In this study, we demonstrate that the radical effect generated during the oxidation of Mn(II)-hydroxides exerts a significant effect on the oxidative dissolution of Cd during the aeration of paddy soils. The extractable Cd concentration decreased rapidly during the reduction phases but increased upon oxidation, while Cd availability produced the opposite effect with soil pe + pH and the extractable Mn concentration. Inhibiting the oxidation of Mn(II)-containing phases by microbes suppressed the production of hydroxyl free radicals (•OH) and Cd mobilization in the drainage phase. Analysis of X-ray absorption spectroscopy and sequential extraction demonstrated that the transformation from the Mn phase of Mn(II) to Mn(III/IV) determines Cd solubility. Altogether, the oxidization of Mn(II)-hydroxides was associated with the generation of significant amounts of •OH. The dissolution of Mn(II)- incorporating phases lead to a net release of Cd into soils during soil aeration.
Mostrar más [+] Menos [-]Heavy metal pollution of soils and risk assessment in Houston, Texas following Hurricane Harvey
2022
Han, Inkyu | Whitworth, Kristina W. | Christensen, Brian | Afshar, Masoud | An Han, Heyreoun | Rammah, Amal | Oluwadairo, Temitope | Symanski, Elaine
In August 2017, after Hurricane Harvey made landfall, almost 52 inches of rain fell during a three-day period along the Gulf Coast Region of Texas, including Harris County, where Houston is located. Harris County was heavily impacted with over 177,000 homes and buildings (approximately 12 percent of all buildings in the county) experiencing flooding. The objective of this study was to measure 13 heavy metals in soil in residential areas and to assess cancer and non-cancer risk for children and adults after floodwaters receded. Between September and November 2017, we collected 174 surface soil samples in 10 communities, which were classified as “High Environmental Impact” or “Low Environmental Impact” communities, based on a composite metric of six environmental parameters. A second campaign was conducted between May 2019 and July 2019 when additional 204 soil samples were collected. Concentrations of metals at both sampling campaigns were higher in High Environmental Impact communities than in Low Environmental Impact communities and there was little change in metal levels between the two sampling periods. The Pollution Indices of lead (Pb), zinc, copper, nickel, and manganese in High Environmental Impact communities were significantly higher than those in Low Environmental Impact communities. Further, cancer risk estimates in three communities for arsenic through soil ingestion were greater than 1 in 1,000,000. Although average soil Pb was lower than the benchmark of the United States Environmental Protection Agency, the hazard indices for non-cancer outcomes in three communities, mostly attributed to Pb, were greater than 1. Health risk estimates for children living in these communities were greater than those for adults.
Mostrar más [+] Menos [-]