Refinar búsqueda
Resultados 1-10 de 20
Effect of sterilization on cadmium immobilization and bacterial community in alkaline soil remediated by mercapto-palygorskite
2021
Wang, Yale | Xu, Yingming | Huang, Qingqing | Liang, Xuefeng | Sun, Yuebing | Qin, Xu | Zhao, Lijie
Cadmium (Cd) pollution in alkaline soil in some areas of northern China has seriously threatened wheat production and human health. However, there are still few effective amendments for alkaline soil, and the mechanism of amendments with a good immobilization effect remains unclear. In this study, soil sterilization experiments were conducted to investigate the effects of soil microorganisms on the immobilization of a novel amendment—mercapto palygorskite (MPAL) in Cd-contaminated alkaline soils. The results showed that the mercapto on the MPAL surface was not affected by autoclaving. Compared with the control, the available Cd concentration in 0.025% MPAL treatments decreased by 18.80-29.23% after 1 d of aging and stabled after 10 d of aging. Importantly, the immobilization of MPAL on Cd in sterilized soil was significantly better than that in natural soil due to the changes in Cd fractions. Compared with MPAL-treated natural soil, exchangeable Cd fraction and carbonate-bound Cd fraction in MPAL-treated sterilized soil decreased by 20.79–27.09% and 20.05–26.45%, while Fe/Mn oxide-bound Cd fraction and organic matter-bound Cd fraction increased by 17.77–22.68% and 18.85–27.32%. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis found that the potential functions of the microbial community in normal and sterilized soil were different significantly. Soil sterilization increased the soil pH and decreased the arylsulfatase activity, but did not change the soil zeta potential and available sulfur. The changes in Cd fractions in MPAL-treated sterilized soil may be related to the reduction in the bacterial community and the changes in function microbial, but not to the soil properties. In addition, MPAL application had little effects on the bacterial community, soil pH value, zeta potential, available sulfur, and arylsulfatase. These results showed that the immobilization of MPAL on Cd in alkaline soil was stable and effective, and was not affected by soil sterilization and soil microorganism reduction.
Mostrar más [+] Menos [-]Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: A 14C-tracer study
2017
Biswas, Bhabananda | Sarkar, Binoy | Rusmin, Ruhaida | Naidu, R.
Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils requires a higher microbial viability and an increased PAH bioavailability. The clay/modified clay-modulated bacterial degradation could deliver a more efficient removal of PAHs in soils depending on the bioavailability of the compounds. In this study, we modified clay minerals (smectite and palygorskite) with mild acid (HCl) and alkali (NaOH) treatments (0.5–3 M), which increased the surface area and pore volume of the products, and removed the impurities without collapsing the crystalline structure of clay minerals. In soil incubation studies, supplements with the clay products increased bacterial growth in the order: 0.5 M HCl ≥ unmodified ≥0.5 M NaOH ≥3 M NaOH ≥3 M HCl for smectite, and 0.5 M HCl ≥3 M NaOH ≥0.5 M NaOH ≥3 M HCl ≥ unmodified for palygorskite. A14C-tracing study showed that the mild acid/alkali-treated clay products increased the PAH biodegradation (5–8%) in the order of 0.5 M HCl ≥ unmodified > 3 M NaOH ≥ 0.5 M NaOH for smectite, and 0.5 M HCl > 0.5 M NaOH ≥ unmodified ≥ 3 M NaOH for palygorskite. The biodegradation was correlated (r = 0.81) with the bioavailable fraction of PAHs and microbial growth as affected particularly by the 0.5 M HCl and 0.5 M NaOH-treated clay minerals. These results could be pivotal in developing a clay-modulated bioremediation technology for cleaning up PAH-contaminated soils and sediments in the field.
Mostrar más [+] Menos [-]Removal of heavy metal Cu(II) in simulated aquaculture wastewater by modified palygorskite
2016
Cao, Jia-Shun | Wang, Cheng | Fang, Fang | Lin, Jun-Xiong
Palygorskite (PAL) is a good heavy metal adsorbent due to its high surface area, low cost, and environmentally compatibility. But the natural PAL has limited its adsorption capacity and selectivity. In this study, a cost-effective and readily-generated absorbent, l-threonine-modified palygorskite (L-PAL), was used and its performance for Cu(II) removal in simulated aquaculture wastewater was evaluated. After preparation, L-PAL was characterized by using Fourier transform infrared spectroscopy, scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffractometer, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis. The impacts of pH, adsorbent dosage, contact time, and initial Cu(II) concentration on the adsorption capacity of L-PAL were examined. The Cu(II) adsorption capacity on L-PAL was enhanced almost 10 times than that of raw PAL. The adsorption isotherms of Cu(II) fit the Langmuir isotherms, and the adsorption kinetics was dominated by the pseudo-second-order model. The thermodynamic parameters at four temperatures were calculated, which indicated that the adsorption was spontaneous and endothermic. The adsorption mechanism involves complexation, chelation, electrostatic attraction, and micro-precipitation. Furthermore, L-PAL is shown to have a high regeneration capacity. These results indicate that L-PAL is a cheap and promising absorbent for Cu(II) removal and hold potential to be used for aquaculture wastewater treatment.
Mostrar más [+] Menos [-]Using raw and thermally modified fibrous clay minerals as low concentration NH4+–N adsorbents
2022
Lazaratou, Christina Vasiliki | Triantaphyllidou, Irene-Eva | Pantelidis, Ioannis | Chalkias, Dimitris A. | Kakogiannis, George | Vayenas, Dimitrios V. | Papoulis, Dimitrios
Raw and modified fibrous clay minerals palygorskite (Pal) and sepiolite (Sep) were tested for their ability to remove ammonium from ammonium polluted water. Palygorskite and sepiolite underwent thermal treatment at 400°C (T-Pal and T-Sep respectively). Raw and thermally treated samples were characterized using XRD, SEM, BET, FTIR, TGA, zeta potential, and XRF. The techniques verified the effect of thermal treatment on sample structures and the enhancement of negative charge. Both raw and thermally activated materials were applied in batch kinetic experiments, and found to be efficient adsorbents in their raw forms, since Pal and Sep achieved 60 and 80% NH₄⁺–N removal respectively within 20 min of contact for initial NH₄⁺–N concentration of 4 mg/L. Similar removal rates were gained for other concentrations representative of contaminated aquifers that were examined, ranging from 1 to 8 mg/L. Results for the modified T-Pal and T-Sep minerals showed up to 20% higher removal rate. Saturation tests indicated the positive effect of thermal treatment on the minerals since T-Pal and T-Sep removal efficiency reached 85% and remained stable for 24 h. However, competitive ions in real water samples can influence the NH₄⁺–N removal efficiency of the examined samples. At almost all the examined samples, the nonlinear Freundlich isotherm and linear pseudo-second kinetic models showed better fitted all examined samples thus indicating heterogeneous chemisorption.
Mostrar más [+] Menos [-]Energetic and Entropic Features of Cu(II) Sorption Equilibria on Fibrous Clay Minerals
2016
Khosravi, Parisa | Shirvani, Mehran | Bakhtiary, Somayeh | Shariatmadari, Hossein
Sorption equilibria of copper(II) ions onto palygorskite and sepiolite clay minerals were studied as a function of temperature. The experimental data were fitted to the Langmuir, Freundlich, Temkin, and R-D models to obtain the isothermal constants. van’t Hoff, Gibbs, Clausius–Clapeyron, and modified Arrhenius equations were also employed to evaluate the thermodynamic parameters involved in Cu sorption. The results showed that fibrous clay minerals exhibit enhanced Cu(II) sorption capacities at higher temperatures. Enthalpy changes (ΔH°) were found to be positive, confirming that the process of Cu(II) sorption on both palygorskite and sepiolite was endothermic. Positive values were also obtained for the entropy changes (ΔS°), which suggests increased randomness at the solid-solution interface during the sorption of Cu(II) ions on both fibrous clay minerals investigated. The free energy changes (ΔG°) were negative for all the different temperatures and initial Cu(II) concentrations tested, indicating that sorption on the minerals is spontaneous and favorable. It was, therefore, concluded that sorption of Cu(II) ions on fibrous clay minerals is entropically driven. The values of isosteric heat of sorption (∆H ₓ) decreased with increasing sorption density, which shows that the clay surface is heterogeneous in terms of the active sites available for Cu(II) retention. The values of activation energy (E ₐ) and sticking probability (S *) generally lied within the ranges associated with physisorption for palygorskite and chemisorptions for sepiolite. In conclusion, the thermodynamic parameters investigated revealed the higher tendency and capacity of sepiolite, compared to palygorskite, for the feasible, spontaneous, and endothermic retention of Cu(II). However, the intensity of Cu(II) interactions with the fibrous clay minerals was found to depend to a large extent on the temperature and the initial Cu loading of the systems.
Mostrar más [+] Menos [-]Enhanced Adsorptive Removal of Methylene Blue from Aqueous Solution by Alkali-Activated Palygorskite
2015
Wang, Wenbo | Wang, Fangfang | Kang, Yuru | Wang, Aiqin
Silicate clay materials are promising natural adsorbents with abundant, low cost, stable, and eco-friendly advantages, but the limited adsorption capacity restricts their applications in many fields. Herein, palygorskite (PAL) was facilely activated with alkali to enhance its adsorptive removal capability for methylene blue (MB). The effects of alkali activation on the microstructure, physicochemical, and adsorption properties of PAL for MB were intensively investigated. It was found that the moderate alkali activation can partially remove the metal cations (i.e., Al³⁺, Mg²⁺) and Si in the crystal backbone of PAL by which new “adsorption sites” were created and the surface negative charges increased. The adsorption capacity and rate of PAL for MB were evidently enhanced due to the effective activation. The adsorption isotherms were described by Freundlich isotherm model very well, and the adsorption kinetics can be accurately presented by a pseudo-second-order model. It can be inferred from the fitting results that the overall adsorption process was controlled by external mass transfer and intra-particle diffusion (the dominant role). The multiple adsorption interactions (hydrogen bonding, electrostatic interactions, mesopore filling, and complexing) were turned out to be the dominant factors to improve the adsorption properties. It was revealed that the activated PAL could be used as a potential adsorption candidate for environmental applications.
Mostrar más [+] Menos [-]Highly efficient debromination of 4,4′-dibrominated diphenyl ether by organic palygorskite–supported Pd/Fe nanoparticles
2022
Shao, Jiang | Zhang, Yi | Liu, Zongtang | Fei, Zhenghao | Sun, Yufeng | Chen, Ziyan | Wen, Xiaoju | Shi, Weizhong | Wang, Dandan | Gu, Chenggang
Organic palygorskite (OP)–supported Pd/Fe nanoparticles composite (OP-Pd/Fe) was prepared by stepwise reduction method. The removal capacity of 4,4′-dibrominated diphenyl ether (BDE15) by OP-Pd/Fe was compared with other various materials. For better understanding the possible mechanism, the synthesized and reacted OP-Pd/Fe materials were characterized by TEM, SEM, XRD, and XPS, respectively. The effects of major influencing parameters on the degradation of BDE15 were also studied. Benefit from the synergistic effect of the carrier and bimetallic nanoparticles, BDE15 could be completely debrominated into diphenyl ether (DE) under suitable conditions. A two-stage adsorption/debromination removal mechanism was proposed. The degradation of BDE15 with OP-Pd/Fe was mainly stepwise debromination reaction, and hydrogen transfer mode was assumed as the dominated debromination mechanism. The removal process fitted well to the pseudo first-order kinetic equation. The observed rate constants increased with increasing Pd loading and OP-Pd/Fe dosage while decreased with increasing initial BDE15 concentration, the tetrahydrofuran/water ratio, and the initial pH of the solution. The work provides a new approach for the treatment of PBDEs pollution.
Mostrar más [+] Menos [-]Photocatalytic degradation of Novacron blue and Novacron yellow textile dyes by the TiO2/palygorskite nanocomposite
2021
de Assis, Mikaely Lizandra Moreira | Junior, Elmar Damasceno | de Almeida, Janiele Mayara Ferreira | do Nascimento Silva, Isabel | Barbosa, Rodrigo Victor | dos Santos, Lamara Maciel | Dias, Elizete Faustino | Fernandes, Nedja Suely | Martínez-Huitle, Carlos Alberto
The photocatalytic discoloration of industrial dyes, Novacron blue (NB) and Novacron yellow (NY), was investigated using composites based on TiO₂ and natural palygorskite (Pal-Ti10 and Pal-Ti30). The method consisted of synthesizing the composites starting from a physical mixture of TiO₂ and natural palygorskite in the presence of alcohol, for impregnation through calcination under conditions of temperature equal to 450 °C and atmospheric air. The characterization techniques used in this work were FTIR, XRD, XRF, SEM, particle size analysis and zeta potential. The photocatalysis for the NB dye was investigated through the application of a factorial 2⁴ experimental design, aiming at the best experimental conditions and finally applying them in another NY industrial dye. The investigated concentrations of NB were 10 ppm and 30 ppm, the composites were synthesized using 10 and 30% (p/p) of titanium dioxide in palygorskite, the two pH values were 2.0 and 6.0 and the light intensities 9 and 18 W were used. Tests performed at pH 2.0, Pal-Ti30 composite, power 18 W and 10 ppm of dye showed 100% color removal of both dyes in 90 min. The bleaching process followed the pseudo-first order kinetic model, and the apparent constants (Kₐₚₚ) were 0.0216 min⁻¹ and 0.0193 min⁻¹ for NB and NY dyes, respectively. The results of total organic carbon (TOC) showed mineralization of 61.70% and 58.06% for NB and NY, respectively, in 90 min of treatment, and the by-products were detected by GC-MS.
Mostrar más [+] Menos [-]Remediation of heavy metal–polluted alkaline vegetable soil using mercapto-grafted palygorskite: effects of field-scale application and soil environmental quality
2021
Qin, Xu | Liu, Yetong | Wang, Lin | Li, Boyan | Wang, Haiyan | Xu, Yingming
Remediation materials are the most critical factors for in situ immobilization of soil contaminated by heavy metals. In this study, in order to improve the performance of palygorskite (Pal), a new remediation material, mercapto-grafted palygorskite (MPal) was synthesized by grafting mercapto groups onto the surface of Pal. The results of field application in northern China showed that at a dosage of 0.12–0.23 kg m⁻², MPal significantly reduced the available concentrations of Cd, Pb, and Cr in the soil by 52.2%, 29.9%, and 46.2%, respectively. Concurrently, Cd, Pb, and Cr concentrations in the shoots of head lettuce also decreased significantly, with the highest reduction being 44.0%, 61.5%, and 50.0%, respectively. At the same dosage, MPal had a better immobilization effect than Pal. There was no significant change in the pH of the vegetable soil, while the zeta potential decreased significantly, indicating that the MPal did not immobilize the heavy metals by increasing the pH, making it suitable for alkaline farmland soil. In addition, soil environmental quality was improved overall. MPal increased the activities of urease, β-glucosidase, cellulase, and catalase by 15.4%, 56.5%, 7.8%, and 14.9%, respectively. It increased the number of fungi and actinomycetes by 4.5% and 23.1%, respectively. MPal, as a new remediation material for soil contaminated by heavy metals, could achieve efficient remediation effects when applied in small doses. Compared with Pal, it is environmentally friendly, is low cost, and is more suitable for the treatment of heavy metal pollution in large areas of farmland.
Mostrar más [+] Menos [-]Adsorption of Hg(II) in solution by mercaptofunctionalized palygorskite
2021
Kang, Chao | Gao, Liwei | Zhu, Hong | Lang, Chunyan | Jiang, Jinlong | Wei, Juan
In the past 10 years, the treatment and restoration of soil and water bodies contaminated by mercury and other heavy metals have received unprecedented attention and support from China’s environmental protection authorities. The search for low-cost and high-efficiency adsorbents has become one of the research hotspots in this field. In this paper, a simple and environment-friendly method was used to graft 3-mercaptopropyl trimethoxysilane on the surface of palygorskite. The synthesized mercaptofunctionalized palygorskite (M-PAL) was characterized by XRD, FT-IR, BET and SEM-EDS, respectively, and its adsorption conditions, adsorption models and thermodynamic parameters for Hg²⁺ were systematically investigated. The experimental results indicated that the saturated adsorption capacity of Hg²⁺ on the M-PAL could reach 203.4 mg·g⁻¹, within 120 min at pH 4 and 298 K. By analyzing the experimental data of adsorption kinetics and thermodynamics, it was found that the adsorption process of Hg²⁺ conformed to the pseudo-second-order kinetic model, which belonged to chemical adsorption of the rate-controlled step; the Langmuir model better described the adsorption isotherm. The thermodynamic parameters obtained (ΔH=29.95 kJ·mol⁻¹, ΔS=103.09 J·mol⁻¹·K⁻¹ and ΔG<0) show that the whole process is a spontaneous endothermic process. When the concentration of Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, NO₃⁻, H₂C₂O₄ and C₆H₈O₇ was 200 times that of Hg²⁺, although these organic acids had a slightly greater effect on the adsorption of Hg²⁺ on mercaptofunctionalized palygorskite than inorganic ions, the adsorption capacity remained above 185 mg·g⁻¹. The adsorption products could be still stable in simulated acid rain with pH 3, 4, 5, 6, 7 and oxalic acid solution with concentration of 1, 2, 3, 4 and 5 mmol·L⁻¹, and the desorption rates were about 3%. Through XPS analysis, the specific coordination of Hg²⁺ with the S atom on the surface of M-PAL was confirmed.
Mostrar más [+] Menos [-]