Refinar búsqueda
Resultados 1-10 de 174
New critical levels for ozone effects on young trees based on AOT 40 and simulated leaf uptake of ozone
2004
Karlsson, Pererik | Uddling, Johan | Braun, Sabine | Broadmeadow, Mark | Elvira, Susana | Gimeno, Benjamin | Le Thiec, Didier, | Oksanen, Elina | Vandermeiren, Karine | Wilkinson, Matthew | Emberson, Lisa
New critical levels for ozone effects on young trees based on AOT 40 and simulated leaf uptake of ozone
2004
Karlsson, Pererik | Uddling, Johan | Braun, Sabine | Broadmeadow, Mark | Elvira, Susana | Gimeno, Benjamin | Le Thiec, Didier | Oksanen, Elina | Vandermeiren, Karine | Wilkinson, Matthew | Emberson, Lisa | Swedish Environmental Research Institute (IVL) | Department of Plant and Environmental Sciences ; Göteborgs Universitet = University of Gothenburg (GU) | Institute for Applied Plant Biology ; Partenaires INRAE | Forest Research [Great Britain] | Ecotoxicidad de la Contaminacion Atmosferica ; Partenaires INRAE | Ecologie et Ecophysiologie Forestières [devient SILVA en 2018] (EEF) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | University of Joensuu | Sciensano [Bruxelles] ; Pasteur Network (Réseau International des Instituts Pasteur) | Stockholm Environment Institute at York (SEI-YORK) ; University of York [York, UK]
International audience
Mostrar más [+] Menos [-]Source analysis of the tropospheric NO2 based on MAX-DOAS measurements in northeastern China
2022
Liu, Feng | Xing, Chengzhi | Su, Pinjie | Luo, Yifu | Zhao, Ting | Xue, Jiexiao | Zhang, Guohui | Qin, Sida | Song, Youtao | Bu, Naishun
Ground-based Multi-Axis Differential Optical Absorption Spectroscopy (Max-DOAS) measurements of nitrogen dioxide (NO₂) were continuously obtained from January to November 2019 in northeastern China (NEC). Seasonal variations in the mean NO₂ vertical column densities (VCDs) were apparent, with a maximum of 2.9 × 10¹⁶ molecules cm⁻² in the winter due to enhanced NO₂ emissions from coal-fired winter heating, a longer photochemical lifetime and atmospheric transport. Daily maximum and minimum NO₂ VCDs were observed, independent of the season, at around 11:00 and 13:00 local time, respectively, and the most obvious increases and decreases occurred in the winter and autumn, respectively. The mean diurnal NO₂ VCDs at 11:00 increased to at 08:00 by 1.6, 5.8, and 6.7 × 10¹⁵ molecules cm⁻² in the summer, autumn and winter, respectively, due to increased NO₂ emissions, and then decreased by 2.8, 4.2, and 5.1 × 10¹⁵ molecules cm⁻² at 13:00 in the spring, summer, and autumn, respectively. This was due to strong solar radiation and increased planetary boundary layer height. There was no obvious weekend effect, and the NO₂ VCDs only decreased by about 10% on the weekends. We evaluated the contributions of emissions and transport in the different seasons to the NO₂ VCDs using a generalized additive model, where the contributions of local emissions to the total in the spring, summer, autumn, and winter were 89 ± 12%, 92 ± 11%, 86 ± 12%, and 72 ± 16%, respectively. The contribution of regional transport reached 26% in the winter, and this high contribution value was mainly correlated with the northeast wind, which was due to the transport channel of air pollutants along the Changbai Mountains in NEC. The NO₂/SO₂ ratio was used to identify NO₂ from industrial sources and vehicle exhaust. The contribution of industrial NO₂ VCD sources was >66.3 ± 16% in Shenyang due to the large amount of coal combustion from heavy industrial activity, which emitted large amounts of NO₂. Our results suggest that air quality management in Shenyang should consider reductions in local NO₂ emissions from industrial sources along with regional cooperative control.
Mostrar más [+] Menos [-]Estimating 2013–2019 NO2 exposure with high spatiotemporal resolution in China using an ensemble model
2022
Huang, Conghong | Sun, Kang | Hu, Jianlin | Xue, Tao | Xu, Hao | Wang, Meng
Air pollution has become a major issue in China, especially for traffic-related pollutants such as nitrogen dioxide (NO₂). Current studies in China at the national scale were less focused on NO₂ exposure and consequent health effects than fine particulate exposure, mainly due to a lack of high-quality exposure models for accurate NO₂ predictions over a long period. We developed an advanced modeling framework that incorporated multisource, high-quality predictor data (e.g., satellite observations [Ozone Monitoring Instrument NO₂, TROPOspheric Monitoring Instrument NO₂, and Multi-Angle Implementation of Atmospheric Correction aerosol optical depth], chemical transport model simulations, high-resolution geographical variables) and three independent machine learning algorithms into an ensemble model. The model contains three stages: (1) filling missing satellite data; (2) building an ensemble model and predicting daily NO₂ concentrations from 2013 to 2019 across China at 1×1 km² resolution; (3) downscaling the predictions to finer resolution (100 m) at the urban scale. Our model achieves a high performance in terms of cross-validation to assess the agreement of the overall (R² = 0.72) and the spatial (R² = 0.85) variations of the NO₂ predictions over the observations. The model performance remains moderately good when the predictions are extrapolated to the previous years without any monitoring data (CV R² > 0.68) or regions far away from monitors (CV R² > 0.63). We identified a clear decreasing trend of NO₂ exposure from 2013 to 2019 across the country with the largest reduction in suburban and rural areas. Our downscaled model further improved the prediction ability by 4%–14% in some megacities and captured substantial NO₂ variations within 1-km grids in the urban areas, especially near major roads. Our model provides flexibility at both temporal and spatial scales and can be applied to exposure assessment and epidemiological studies with various study domains (e.g., national or citywide) and settings (e.g., long-term and short-term).
Mostrar más [+] Menos [-]Nocturnal pollutant uptake contributes significantly to the total stomatal uptake of Mangifera indica
2022
Datta, Savita | Sharma, Anita | Sinha, Baerbel
DO₃SE (Deposition of Ozone for Stomatal Exchange), is a dry deposition model, designed to assess tropospheric ozone risk to vegetation, and is based on two alternative algorithms to estimate stomatal conductance: multiplicative and photosynthetic. The multiplicative model has been argued to perform better for leaf-level and regional-level application. In this study, we demonstrate that the photosynthetic model is superior to the multiplicative model even for leaf-level studies using measurements performed on Mangifera indica. We find that the multiplicative model overestimates the daytime stomatal conductance, when compared with measured stomatal conductance and prescribes zero conductance at night while measurements show an average conductance of 100 mmol(H₂O)m⁻²s⁻¹ between 9 p.m. and 4 a.m. The daytime overestimation of the multiplicative model can be significantly reduced when the model is modified to include a response function for ozone-induced stomatal closure. However, nighttime pollutant uptake fluxes can only be accurately assessed with the photosynthetic model which includes the stomatal opening at night during respiration and is capable of reproducing the measured nighttime stomatal conductance. At our site, the nocturnal flux contributes 64%, 39%, 46%, and 88% of the total for NO₂ uptake in winter, summer, monsoon, and post-monsoon, respectively. For SO₂, nocturnal uptake amounts to 35%, 28%, 28%, and 44% in winter, summer, monsoon, and post-monsoon, respectively while for ozone the nighttime uptake contributes 30%, 17%, 18%, and 29% of the total stomatal uptake in winter, summer, monsoon, and post-monsoon respectively.
Mostrar más [+] Menos [-]The seasonal variations and potential sources of nitrous acid (HONO) in the rural North China Plain
2022
Song, Yifei | Zhang, Yuanyuan | Xue, Chaoyang | Liu, Pengfei | He, Xiaowei | Li, Xuran | Mu, Yujing
Nitrous acid (HONO), an essential precursor of hydroxyl radicals (OH) in the troposphere, plays an integral role in atmospheric photochemistry. However, potential HONO sources remain unclear, particularly in rural areas, where long-term (including seasonal) measurements are scarce. HONO and related parameters were measured at a rural site in the North China Plain (NCP) during the winter of 2017 and summer and autumn of 2020. The mean HONO level was higher in winter (1.79 ± 1.44 ppbv) than in summer (0.67 ± 0.50 ppbv) and autumn (0.83 ± 0.62 ppbv). Source analysis revealed that the heterogeneous conversion (including photo-enhanced conversion) of NO₂ on the ground surface dominated the daytime HONO production in the three seasons (43.1% in winter, 54.3% in summer, and 62.0% in autumn), and the homogeneous reaction of NO and OH contributed 37.8, 12.2, and 28.4% of the daytime HONO production during winter, summer, and autumn, respectively. In addition, the total contributions of other sources (direct vehicle emissions, particulate nitrate photolysis, NO₂ uptake and its photo-enhanced reaction on the aerosol surface) to daytime HONO production were less than 5% in summer and autumn and 12.0% in winter. Unlike winter and autumn, an additional HONO source was found in summer (0.45 ± 0.21 ppbv h⁻¹, 31.4% to the daytime HONO formation), which might be attributed to the HONO emission from the fertilized field. Among the primary radical sources (photolysis of HONO, O₃, and formaldehyde), HONO photolysis was dominant, with contributions of 82.6, 49.3, and 63.2% in winter, summer, and autumn, respectively. Our findings may aid in understanding HONO formation in different seasons in rural areas and may highlight the impact of HONO on atmospheric oxidation capacity.
Mostrar más [+] Menos [-]A cold front induced co-occurrence of O3 and PM2.5 pollution in a Pearl River Delta city: Temporal variation, vertical structure, and mechanism
2022
He, Yuanping | Li, Lei | Wang, Haolin | Xu, Xinqi | Li, Yuman | Fan, Shaojia
In this study, the spatiotemporal variabilities and characteristics of ozone (O₃) and fine particulate matter (PM₂.₅) were reconstructed, and the interaction between meteorological conditions and the co-occurrence of O₃ and PM₂.₅ in Zhuhai, a city in the Pearl River Delta (China), was analysed. The vertical distributions of lower tropospheric O₃, aerosol extinction coefficient, and wind velocity were measured using a ground-based LiDAR system. The diurnal variations in air pollutant concentrations and meteorological conditions at ground level were examined from 28 November to December 8, 2020 considering the weather conditions in Zhuhai. Heavy pollution episodes with increased concentrations of O₃ and PM₂.₅ were observed from 6 to 7 December after a period of cold air invasion. The maximum hourly average concentrations of O₃ and PM₂.₅ at the ground level reached up to 190 μg/m³, 98 μg/m³, respectively. The horizontal wind speed rapidly decreased to less than 2 m/s during the heavy pollution episodes driven by O₃ and PM₂.₅, whereas the vertical wind velocity was dominated by the downdraught. When the large-scale synoptic winds were weak, a strengthening sea breeze in the afternoon could promote the landward propagation of warm marine air masses, and a lower surface wind speed was driven by the convergence of cold air from the north and warm air from the south. In turn, this increased the residence time of air pollutants and promoted their conversion to secondary pollutants. Regarding the pollution sources, the results indicated that the Pearl River Estuary represented a ‘pool’ of O₃ and PM₂.₅ pollution. In addition, the contribution of regional pollutant transport could not be ignored when considering the accumulative increase in air pollution. Overall, the relatively weak synoptic winds, low mixing height, and high generation of pollution around Zhuhai collectively resulted in high concentrations of O₃ and PM₂.₅.
Mostrar más [+] Menos [-]Effects of ozone stress on flowering phenology, plant-pollinator interactions and plant reproductive success
2021
Duque, Laura | Poelman, Erik H. | Steffan-Dewenter, Ingolf
Tropospheric ozone is a highly oxidative pollutant with the potential to alter plant metabolism. The direct effects of ozone on plant phenotype may alter interactions with other organisms, such as pollinators, and, consequently, affect plant reproductive success. In a set of greenhouse experiments, we tested whether exposure of plants to a high level of ozone affected their phenological development, their attractiveness to four different pollinators (mason bees, honeybees, hoverflies and bumblebees) and, ultimately, their reproductive success. Exposure of plants to ozone accelerated flowering, particularly on plants that were growing in autumn, when light and temperature cues, that commonly promote flowering, were weaker. Simultaneously, there was a tendency for ozone-exposed plants to disinvest in vegetative growth. Plant exposure to ozone did not substantially affect pollinator preference, but bumblebees had a tendency to visit more flowers on ozone-exposed plants, an effect that was driven by the fact that these plants tended to have more open flowers, meaning a stronger attraction signal. Honeybees spent more time per flower on ozone-exposed plants than on control plants. Acceleration of flower production and the behavioural responses of pollinators to ozone-exposed plants resulted in retained reproductive fitness of plants pollinated by bumblebees, honeybees and mason bees, despite the negative effects of ozone on plant growth. Plants that were pollinated by hoverflies had a reduction in reproductive fitness in response to ozone. In a natural setting, acceleration of flowering by ozone might foster desynchronization between plant and pollinator activities. This can have a strong impact on plants with short flowering periods and on plants that, unlike wild mustard, lack compensatory mechanisms to cope with the absence of pollinator activity in the beginning of flowering.
Mostrar más [+] Menos [-]Exploring new strategies for ozone-risk assessment: A dynamic-threshold case study
2021
Conte, A. | Otu-Larbi, F. | Alivernini, A. | Hoshika, Y. | Paoletti, E. | Ashworth, K. | Fares, S.
Tropospheric ozone is a dangerous atmospheric pollutant for forest ecosystems when it penetrates stomata. Thresholds for ozone-risk assessment are based on accumulated stomatal ozone fluxes such as the Phytotoxic Ozone Dose (POD). In order to identify the effect of ozone on a Holm oak forest in central Italy, four flux-based ozone impact response functions were implemented and tested in a multi-layer canopy model AIRTREE and evaluated against Gross Primary Productivity (GPP) obtained from observations of Eddy Covariance fluxes of CO₂. To evaluate if a clear phytotoxic threshold exists and if it changes during the year, six different detoxifying thresholds ranging between 0 and 5 nmol O₃ m⁻² s⁻¹ were tested.The use of species-specific rather than more general response functions based on plant functional types (PFT) increased model accuracy (RMSE reduced by up to 8.5%). In the case of linear response functions, a threshold of 1 nmol m⁻² s⁻² produced the best results for simulations of the whole year, although the tolerance to ozone changed seasonally, with higher tolerance (5 nmol m⁻² s⁻¹ or no ozone impact) for Winter and Spring and lower thresholds in Summer and Fall (0–1 nmol m⁻² s⁻¹). A “dynamic threshold” obtained by extracting the best daily threshold values from a range of different simulations helped reduce model overestimation of GPP by 213 g C m⁻² y⁻¹ and reduce RMSE up to 7.7%. Finally, a nonlinear ozone correction based on manipulative experiments produced the best results when no detoxifying threshold was applied (0 nmol O₃ m⁻² s⁻¹), suggesting that nonlinear functions fully account for ozone detoxification. The evidence of seasonal changes in ozone tolerance points to the need for seasonal thresholds to predict ozone damage and highlights the importance of performing more species-specific manipulative experiments to derive response functions for a broad range of plant species.
Mostrar más [+] Menos [-]Mapping high resolution national daily NO2 exposure across mainland China using an ensemble algorithm
2021
Liu, Jianjun
Nitrogen dioxide (NO₂) is an important air pollutant and highly related to air quality, short- and long-term health effects, and even climate. A national model was developed using the extreme gradient boosting algorithm with high-resolution tropospheric vertical column NO₂ densities from the Sentinel-5 Precursor/Tropospheric Monitoring Instrument and general meteorological variables as input to generate daily mean surface NO₂ concentrations across mainland China. Model-derived daily NO₂ estimates were high accuracy with sample-based cross-validation coefficient of determination of 0.83, a root-mean-square error of 7.58 μg/m³, a mean prediction error of 5.56 μg/m³, and a mean relative prediction error of 18.08%. It has good performance in NO₂ estimations at both regional and individual site scale. The model also performed well in terms of estimating monthly, seasonal, and annual mean NO₂ concentrations across China. The model performance appears to better than or comparable to most previous related studies. The seasonal and annual spatial distributions of surface NO₂ across China and several regional NO₂ hotspots in 2019 were derived from the model and analyzed. Also evaluated were the population exposure levels of NO₂ for cities in and provinces of China. At the national scale, about 12% of the population experienced annual mean NO₂ concentrations exceeding the Chinese national air quality standard. The nationwide model with conventional predictors developed here can derive high-resolution surface NO₂ concentrations across China routinely, benefitting air epidemiological and environmental related studies.
Mostrar más [+] Menos [-]