Refinar búsqueda
Resultados 1061-1070 de 4,937
Quality assessment of water intended for human consumption from Kwanza, Dande and Bengo rivers (Angola) Texto completo
2019
Paca, Juliana M. | Santos, Francisca M. | Pires, José C.M. | Leitão, Anabela A. | Boaventura, Rui A.R.
Angola is one of the countries with a high rate of waterborne diseases, due to the scarcity and poor quality of water for human consumption. The watercourses are receptors of many effluents, mainly domestic sewage, due to a precarious or inexistent sanitation system and a small number of wastewater treatment plants. Therefore, this study aims: (i) to evaluate the water quality (physicochemical and microbiological parameters) of three Angolan rivers (Kwanza, Bengo and Dande) in locations where water is used as drinking water or abstracted for human consumption; (ii) to develop a new water quality index able to quantitatively express the water quality in those sites; and (iii) to assess the spatial distribution of water pollution through principal component analysis (PCA).Water quality assessment was performed by conducting four field surveys (campaigns I to IV); the first two campaigns took place in the dry season, while the last two ones took place in the rainy season. In the first two campaigns, the water quality was suitable to be treated for the production of drinking water, while in the last two campaigns, the water was unsuitable for that purpose (high levels of faecal coliforms were detected). The water quality index allowed to classify the water as generally excellent (campaigns I and II) and poor (campaigns III and IV). The rudimentary disinfection usually performed by individual water suppliers may improve the water quality, but it was not enough to achieve the parametric values required for human consumption in the rainy season (campaigns III and IV) except for Bengo sites. PCA identified sampling sites with the same water quality patterns, grouping into four groups (Kwanza sites) and two groups (Dande and Bengo sites). Therefore, the results of this study may support decision-makers as regards water supply management in the river stretches under study.The new developed Water Quality Index can support decision-makers in terms of water supply management, especially in countries with a high rate of waterborne diseases (e.g. Angola).
Mostrar más [+] Menos [-]Vehicle emissions and fertilizer impact the leaf chemistry of urban trees in Salt Lake Valley, UT Texto completo
2019
Cobley, L.A.E. | Pataki, D.E.
The urban nitrogen (N) and carbon (C) cycles are substantially influenced by human activity. Alterations to these cycles include increased inputs from fossil fuel combustion and fertilizer use. The leaf chemistry of urban trees can be used to distinguish between these different N and C sources. Here, we evaluated relationships between urban vegetation and different N and C sources in street and residential trees in the Salt Lake Valley, Utah. We tested three hypotheses: 1) unfertilized street trees on high traffic density roads will have higher leaf %N, more enriched δ¹⁵N and more depleted δ¹³C than unfertilized street trees on low traffic density roads; 2) trees in high income residential neighborhoods will have higher leaf %N, more depleted δ¹⁵N and more enriched δ¹³C than trees in lower income neighborhoods; and 3) unfertilized street trees will have lower leaf %N, more enriched δ¹⁵N and more depleted δ¹³C than fertilized residential trees. Leaf δ¹⁵N was more enriched near high traffic density roads for one study species. However, street tree δ¹⁵N and δ¹³C were largely influenced by vehicle emissions from primary and secondary roads within 1000 m radius rather than the immediately adjacent road. Leaf δ¹³C was correlated with neighborhood income, although this relationship may be the result of variations in irrigation practices rather than variations in C sources. Finally, unfertilized trees in downtown Salt Lake had lower leaf %N, more enriched δ¹⁵N and more depleted δ¹³C than fertilized trees. These results highlight that urban trees can serve as biomonitors of the environment. Moreover, they emphasize that roads can have large spatial footprints and that the leaf chemistry of urban vegetation may be influenced by the spatial patterns in roads and road densities at the landscape scale.
Mostrar más [+] Menos [-]Synergistic effects of anionic surfactants on adsorption of norfloxacin by magnetic biochar derived from furfural residue Texto completo
2019
Li, Changjing | Gao, Yuan | Li, Aimin | Zhang, Lei | Ji, Guozhao | Zhu, Kongyun | Wang, Xuexue | Zhang, Yulin
Norfloxacin (NOR) is a persistent organic pollutant and can be effectively removed from effluent by adsorption of biochar. However, the presence of other emerging contaminants, such as surfactants, will potentially alter adsorption performance of norfloxacin by biochar and the molecular-scale mechanisms of the interaction between surfactants and biochar remain poorly understood. In this study, adsorption of norfloxacin on magnetic biochar prepared with iron-containing furfural residue (FRMB) in the presence or absence of anionic surfactants was investigated. The adsorption of NOR was significantly affected by the initial pH and anionic surfactants-sodium dodecyl sulfate (SDS) and sodium dodecyl benzene sulfonate (SDBS). In the presence of SDS and SDBS, the maximum sorption capacities of NOR were 2.33 and 1.97 times higher than that in the absence of surfactants, reached to 698.6 mg g⁻¹ and 589.9 mg g⁻¹, respectively. The optimal pH condition which was 4 indicated that electrostatic adsorption played a decisive role in the adsorption process after introduction of SDS/SDBS. The adsorption data were fitted well by the Elovich model and Freundlich model at the optimal conditions in which both SDS and SDBS were hemimicelle (0.8 mM SDS or 0.4 mM SDBS), indicating surface heterogeneity of FRMB and the adsorption mechanism was related to the assembly of surfactants on biochar. FTIR results showed that FRMB and SDS/SDBS interacted through hydrophobic action, and more complex or aggregates were formed between the NOR and biochar/SDS/SDBS. This work highlights the synergistic enhancement effects of tested surfactants on the removal of NOR by magnetic biochar from aqueous systems.
Mostrar más [+] Menos [-]Contaminants in Atlantic walruses in Svalbard part 1: Relationships between exposure, diet and pathogen prevalence Texto completo
2019
Scotter, Sophie E. | Tryland, Morten | Nymo, Ingebjørg H. | Hanssen, Linda | Harju, Mikael | Lydersen, Christian | Kovacs, Kit M. | Klein, Jörn | Fisk, Aaron T. | Routti, Heli
Contaminants in Atlantic walruses in Svalbard part 1: Relationships between exposure, diet and pathogen prevalence Texto completo
2019
Scotter, Sophie E. | Tryland, Morten | Nymo, Ingebjørg H. | Hanssen, Linda | Harju, Mikael | Lydersen, Christian | Kovacs, Kit M. | Klein, Jörn | Fisk, Aaron T. | Routti, Heli
This study investigated relationships between organohalogen compound (OHC) exposure, feeding habits, and pathogen exposure in a recovering population of Atlantic walruses (Odobenus rosmarus rosmarus) from the Svalbard Archipelago, Norway. Various samples were collected from 39 free-living, apparently healthy, adult male walruses immobilised at three sampling locations during the summers of 2014 and 2015. Concentrations of lipophilic compounds (polychlorinated biphenyls, organochlorine pesticides and polybrominated diphenyl ethers) were analysed in blubber samples, and concentrations of perfluoroalkylated substances (PFASs) were determined in plasma samples. Stable isotopes of carbon and nitrogen were measured in seven tissue types and surveys for three infectious pathogens were conducted. Despite an overall decline in lipophilic compound concentrations since this population was last studied (2006), the contaminant pattern was similar, including extremely large inter-individual variation. Stable isotope ratios of carbon and nitrogen showed that the variation in OHC concentrations could not be explained by some walruses consuming higher trophic level diets, since all animals were found to feed at a similar trophic level. Antibodies against the bacteria Brucella spp. and the parasite Toxoplasma gondii were detected in 26% and 15% of the walruses, respectively. Given the absence of seal-predation, T. gondii exposure likely took place via the consumption of contaminated bivalves. The source of exposure to Brucella spp. in walruses is still unknown. Parapoxvirus DNA was detected in a single individual, representing the first documented evidence of parapoxvirus in wild walruses. Antibody prevalence was not related to contaminant exposure. Despite this, dynamic relationships between diet composition, contaminant bioaccumulation and pathogen exposure warrant continuing attention given the likelihood of climate change induced habitat and food web changes, and consequently OHC exposure, for Svalbard walruses in the coming decades.
Mostrar más [+] Menos [-]Contaminants in Atlantic walruses in Svalbard part 1: Relationships between exposure, diet and pathogen prevalence Texto completo
Scotter, Sophie E. | Tryland, Morten | Nymo, Ingebjørg H. | Hanssen, Linda | Harju, Mikael | Lydersen, Christian | Kovacs, Kit M. | Klein, Jörn | Fisk, Aaron T. | Routti, Heli
This study investigated relationships between organohalogen compound (OHC) exposure, feeding habits, and pathogen exposure in a recovering population of Atlantic walruses (Odobenus rosmarus rosmarus) from the Svalbard Archipelago, Norway. Various samples were collected from 39 free-living, apparently healthy, adult male walruses immobilised at three sampling locations during the summers of 2014 and 2015. Concentrations of lipophilic compounds (polychlorinated biphenyls, organochlorine pesticides and polybrominated diphenyl ethers) were analysed in blubber samples, and concentrations of perfluoroalkylated substances (PFASs) were determined in plasma samples. Stable isotopes of carbon and nitrogen were measured in seven tissue types and surveys for three infectious pathogens were conducted. Despite an overall decline in lipophilic compound concentrations since this population was last studied (2006), the contaminant pattern was similar, including extremely large inter-individual variation. Stable isotope ratios of carbon and nitrogen showed that the variation in OHC concentrations could not be explained by some walruses consuming higher trophic level diets, since all animals were found to feed at a similar trophic level. Antibodies against the bacteria Brucella spp. and the parasite Toxoplasma gondii were detected in 26% and 15% of the walruses, respectively. Given the absence of seal-predation, T. gondii exposure likely took place via the consumption of contaminated bivalves. The source of exposure to Brucella spp. in walruses is still unknown. Parapoxvirus DNA was detected in a single individual, representing the first documented evidence of parapoxvirus in wild walruses. Antibody prevalence was not related to contaminant exposure. Despite this, dynamic relationships between diet composition, contaminant bioaccumulation and pathogen exposure warrant continuing attention given the likelihood of climate change induced habitat and food web changes, and consequently OHC exposure, for Svalbard walruses in the coming decades. This study reports levels of pollutants in comparison with diet and pathogen exposure in 39 male Atlantic walruses from Svalbard, Norway.
Mostrar más [+] Menos [-]PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance Texto completo
2019
Wang, Yan | Tang, Meng
PM2.5 is becoming a worldwide environmental problem, which profoundly endangers public health, thus progressively capturing public attention this decade. As a fragile target of PM2.5, the underlying mechanisms of endothelial cell damage are still obscure. According to the previous microarray data and signaling pathway analysis, a new form of cell death termed ferroptosis in the current study is proposed following PM2.5 exposure. In order to verify the vital role of ferroptosis in PM2.5-induced endothelial lesion and further understand the potential mechanism involved, intracellular iron content, ROS release and lipid peroxidation, as well as biomarkers of ferroptosis were detected, respectively. As a result, uptake of particles increases cellular iron content and ROS production. Meanwhile, GSH depletion, and the decrease of GSH-Px and NADPH play significant roles in PM2.5-induced endothelial cell ferroptosis. Moreover, significantly changed expression of TFRC, FTL and FTH1 hinted that dysfunction of iron uptake and storage is a major inducer of ferroptosis. Importantly, index monitored above can be partially rescued by lipid peroxidation inhibitor ferrostatin-1 and iron chelator deferoxamine mesylate, which mediated antiferroptosis activity mainly depends on the restoration of antioxidant activity and iron metabolism. In conclusion, our data basically show that PM2.5 enhances ferroptosis sensitivity with increased ferroptotic events in endothelial cells, in which iron overload, lipid peroxidation and redox imbalance act pivotal roles.
Mostrar más [+] Menos [-]Sediment records of polybrominated diphenyl ethers (PBDEs) in Huaihe River, China: Implications for historical production and household usage of PBDE-containing products Texto completo
2019
Da, Chunnian | Wang, Ruwei | Ye, Jingsong | Yang, Shichao
In recent decades, rapid development of industrialization and urbanization caused adverse impact on the aqueous ecology and environment of the Huaihe River basin, China. In this work, three ²¹⁰Pb-dated sediment cores extracted from the middle reach of Huaihe River in Anhui Province, China were analyzed to elucidate the temporal trends and sources of polybrominated diphenyl ethers (PBDEs). Source diagnostics indicated that commercial Deca-BDE, Penta-BDE and Octa-BDE products and debromination of higher brominated BDE compounds were likely the PBDE sources in the Huaihe River. The prevalence of BDE-47 in the sediment cores was attributed to the extensive use of commercial Bromkal 70-5DE and Bromkal DE-71 in the region. BDE-28 was another congener that was prevalent in all sediment samples, suggesting that reductive debromination occurred in the sediments. Dramatic increase of PBDE concentrations in both three cores since the post-1980s could be attributed to the rapid expansion of production of electronic and telecommunication equipment and household usage in China. PBDE temporal trends in core S1 located at rural area mainly reflected the regional and national inputs deriving from long distance atmospheric transport, and the positive correlations between PBDE concentration in core S1 and gross domestic product (GDP) and household appliances production volumes (HPVs) were observed. PBDE inputs at site S3 mainly include the transport of contaminated water and re-suspended fine sediment particles from the upstream site S2, which was located in the industrial area and adjacent to e-waste recycling area. The government efforts to protect the environment and improve the e-waste management resulted in the progressive decrease trends in PBDE concentrations in cores S2 and S3.
Mostrar más [+] Menos [-]Satellite-derived PM2.5 concentration trends over Eastern China from 1998 to 2016: Relationships to emissions and meteorological parameters Texto completo
2019
Gui, Ke | Che, Huizheng | Wang, Yaqiang | Wang, Hong | Zhang, Lei | Zhao, Hujia | Zheng, Yu | Sun, Tianze | Zhang, Xiaoye
Fine particulate matter (PM₂.₅) pollution in Eastern China (EC) has raised concerns due to its adverse effects on air quality, climate, and human health. This study investigated the long-term variation trend in satellite-derived PM₂.₅ concentrations and how it was related to pollutant emissions and meteorological parameters over EC and seven regions of interest (ROIs) during 1998–2016. Over EC, the annual mean PM₂.₅ increased before 2006 due to the enhanced emissions of primary PM₂.₅, NOₓ and SO₂, but decreased with the reduced SO₂ emissions after 2006 evidently in response to China's clean air policies. In addition, results from statistical analyses indicated that in the North China Plain (NCP), Northeast China (NEC), Sichuan Basin (SCB) and Central China (CC) planetary boundary layer height (PBLH) was the dominant meteorological driver for the PM₂.₅ decadal changes, and in the Pearl River Delta (PRD) wind speed is the leading factor. Overall, the variation in meteorological parameters accounted for 48% of the variances in PM₂.₅ concentrations over EC. The population-weighted PM₂.₅ over EC increased from 36.4 μg/m³ in 1998–2004 (P1) to 49.4 μg/m³ in 2005–2010 (P2) then decreased to 46.5 μg/m³ in 2011–2016 (P3). In the NCP and NEC, the percentages of the population living above the World Health Organization (WHO) Interim Target-1 (IT-1, 35 μg/m³) have risen steadily over the past 20 yr, reaching maxima of 97.3% and 78.8% in P3, respectively, but decreases of ∼30% from P2 to P3 were found for the SCB and PRD.
Mostrar más [+] Menos [-]Athabasca oil sands region snow contains efficient micron and nano-sized ice nucleating particles Texto completo
2019
The Athabasca Oil Sands Region (AOSR) in Alberta, Canada, is an important source of atmospheric pollutants, such as aerosols, that have repercussions on both the climate and human health. We show that the mean freezing temperature of snow-borne particles from AOSR was elevated (−7.1 ± 1.8 °C), higher than mineral dust which freezes at ∼ −15 °C and is recognized as one of the most relevant ice nuclei globally. Ice nucleation of nanosized snow samples indicated an elevated freezing ability (−11.6 ± 2.0 °C), which was statistically much higher than snow-borne particles from downtown Montreal. AOSR snow had a higher concentration (∼2 orders of magnitude) of >100 nm particles than Montreal. Triple quadrupole ICP-(QQQ)-MS/MS analysis of AOSR and Montreal snow demonstrated that most concentrations of metals, including those identified as emerging nanoparticulate contaminants, were much more elevated in AOSR in contrast to Montreal: 34.1, 34.1, 16.6, 5.8, 0.3, 0.1, and 9.4 mg/m³ for Cr, Ni, Cu, As, Se, Cd, and Pb respectively, in AOSR and 1.3, 0.3, 2.0, <0.03, 0.1, 0.03, and 1.2 mg/m³ in Montreal snow. High-resolution Scanning Transmission Electron Microscopy/Energy-dispersive X-ray Spectroscopy (STEM-EDS) imaging provided evidence for various anthropogenic nano-materials, including carbon nanotubes resembling structures, in AOSR snow up to 7–25 km away from major oil sands upgrading facilities. In summary, particles characterized as coming from oil sands are more efficient at ice nucleation. We discuss the potential impacts of AOSR emissions on atmospheric and microphysical processes (ice nucleation and precipitation) both locally and regionally.
Mostrar más [+] Menos [-]Performance of a novel magnetic solid-phase-extraction microsphere and its application in the detection of organic micropollutants in the Huai River, China Texto completo
2019
Solid phase extraction has been increasingly applied for the detection of organic micropollutants (OMPs). However, time-consuming and high-cost disadvantages also limit the widespread use of this method, especially for the extraction of large-volume field water samples. In this study, a gas chromatography-mass spectrometry (GC-MS) method based on the magnetic microsphere (M150) solid-phase-extraction (MSPE) was established to investigate the OMPs in source water throughout the whole Huai River. In brief, the results demonstrated that the extraction efficiency of the M150 was superior to that of C₁₈ and HLB for the selected OMPs, including species of polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), phthalate esters (PAEs) and nitrobenzenes (NBs), and the method detection limits of M150 for these OMPs were comparable to those of C₁₈ and HLB. The optimized conditions of extraction and elution were the 100 mg/L dosages of microspheres, extraction time of 60 min and pH of 2, and the eluent with a similar polarity, hydrophobicity and molecular structure to the OMPs rendered higher elution efficiencies. A total of 21 types of OMPs affiliating to PAHs, OCPs, PAEs and NBs were detected by the established method, with the total concentrations of 505–2310 ng/L in source water of the Huai River. Spatial differences of the OMPs were also observed, demonstrating the link between pollutant profiles and geographical locations. This study provides an alternative to enrich OMPs in filed water samples, and it reveals pollutant profiles of source water throughout the whole Huai River.
Mostrar más [+] Menos [-]Microplastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota Texto completo
2019
(Danielle Peta),
Sustainable alternatives to landfill disposal for municipal mixed wastes represents a major challenge to governments and waste management industries. In the state of New South Wales (NSW) Australia, mechanical biological treatment (MBT) is being used to reduce the volume and pathogen content of organic matter isolated from municipal waste. The product of this treatment, a compost-like output (CLO) referred to as mixed waste organic output (MWOO), is being recycled and applied as a soil amendment. However, the presence of contaminants in MWOO including trace organics, trace metals and physical contaminants such as microplastic fragments has raised concerns about potential negative effects on soil health and agriculture following land application. Here, we used multiple lines of evidence to examine the effects of land application of MWOO containing microplastics in three soils to a variety of terrestrial biota. Treatments included unamended soil, MWOO-amended soil and MWOO-amended soil into which additional high-density polyethylene (HDPE), polyethylene terephthalate (PET), or polyvinyl chloride (PVC) microplastics were added. Tests were conducted in soil media that had been incubated for 0, 3 or 9 months. Addition of microplastics had no significant negative effect on wheat seedling emergence, wheat biomass production, earthworm growth, mortality or avoidance behaviour and nematode mortality or reproduction compared to controls. There was also little evidence the microplastics affected microbial community diversity, although measurements of microbial community structure were highly variable with no clear trends.
Mostrar más [+] Menos [-]