Refinar búsqueda
Resultados 451-460 de 4,921
Development of a calibration chamber to evaluate the performance of low-cost particulate matter sensors
2019
Sayahi, T. | Kaufman, D. | Becnel, T. | Kaur, K. | Butterfield, A. | Collingwood, S. | Zhang, Y. | Gaillardon, P.-E. | Kelly, K.E.
Low-cost particulate matter (PM) air quality sensors are becoming widely available and are being increasingly deployed in ambient and home/workplace environments due to their low cost, compactness, and ability to provide more highly resolved spatiotemporal PM concentrations. However, the PM data from these sensors are often of questionable quality, and the sensors need to be characterized individually for the environmental conditions under which they will be making measurements. In this study, we designed and assessed a cost-effective (∼$700) calibration chamber capable of continuously providing a uniform PM concentration simultaneously to multiple low-cost PM sensors and robust calibration relationships that are independent of sensor position. The chamber was designed and evaluated with a Computational Fluid Dynamics (CFD) model and a rigorous experimental protocol. We then used this new chamber to calibrate 242 Plantower PMS 3003 sensors from two production lots (Batches I and II) with two aerosol types: ammonium nitrate (for Batches I and II) and alumina oxide (for Batch I). Our CFD models and experiments demonstrated that the chamber is capable of providing uniform PM concentration to 8 PM sensors at once within 6% error and with excellent reliability (intraclass correlation coefficient > 0.771). The study identified two malfunctioning sensors and showed that the remaining sensors had high linear correlations with a DustTrak monitor that was calibrated for each aerosol type (R2 > 0.978). Finally, the results revealed statistically significant differences between the responses of Batches I and II sensors to the same aerosol (P-value<0.001) and the Batch I sensors to the two different aerosol types (P-value<0.001). This chamber design and evaluation protocol can provide a useful tool for those interested in systematic laboratory characterization of low-cost PM sensors.
Mostrar más [+] Menos [-]Infiltration behavior of heavy metals in runoff through soil amended with biochar as bulking agent
2019
Zhao, Ling | Nan, Hongyan | Kan, Yue | Xu, Xiaoyun | Qiu, Hao | Cao, Xinde
Biochar as a porous carbon material could be used for improving soil physical and chemical properties, while insufficient attention has been paid to potential risks induced by infiltration of heavy metals in the runoff water flowing through biochar-amended soil. Four different soil-biochar matrices with same volumes were constructed including soil alone (M1), biochar alone (M2), soil-biochar layering (M3) and soil-biochar mixing (M4). Leaching experiments were conducted with Pb, Cu, and Zn contaminated runoff water. Results showed that biochar amendment greatly improved the water permeation, and the infiltration rates in M2, M3, and M4 were 2.85–23.0 mm min⁻¹, being much higher than those in M1 (1.33–4.05 mm min⁻¹), though the rates decreased as the leaching volumes increased. However, biochar induced more Pb, Cu, and Zn infiltrated through soil-biochar matrix. After 350-L leaching, M1 retained about 95% Pb, 90% Cu, and 36% Zn, while M2 only retained 4.80% Pb, 17.4% Cu, and 4.01% Zn; about 30% Pb, 80% Cu, and 15% Zn were retained in M3 and M4. Notably, Zn was trapped first and then re-leached into the filtrate, which resulted in a much higher effluent Zn than the influent Zn at the later stage. However, the unit weight of biochar showed a higher capacity for retaining heavy metals compared to per unit of soil. Under the dynamic water flow, all benefits and disadvantages induced by biochar were weakened with its physical disintegration. Biochar as soil amendment can enhance plant growth via ameliorating soil structure, while it would pose risks to environment because of large penetration of heavy metals. If biochar was compacted to form a denser physical structure, perhaps more heavy metals could be retained.
Mostrar más [+] Menos [-]Effects of biochar on uptake, acquisition and translocation of silver nanoparticles in rice (Oryza sativa L.) in relation to growth, photosynthetic traits and nutrients displacement
2019
Abbas, Qumber | Liu, Guijian | Yousaf, Balal | Ali, Muhammad Ubaid | Ullah, Habib | Ahmed, Rafay
Rapid development in nanotechnology and incorporation of silver nanoparticles (AgNPs) in wide range of consumer products causing the considerable release of these NPs in the environment, leading concerns for ecosystem safety and plant health. In this study, rice (Oryza sativa) was exposed to AgNPs (0, 100, 200, 500 and 1000 mg L−1) in biochar amended (2 %w/v) and un-amended systems. Exposure of plants to AgNPs alone reduced the root and shoot length, biomass production, chlorophyll contents, photosynthesis related physiological parameters as well as macro-and micronutrients in a dose dependent manner. However, in case of biochar amendment, physiological parameters i.e., net photosynthesis rate, maximum photosynthesis rate, CO2 assimilation, dark respiration and stomatal conductance reduced only 16, 6, 7, 3 and 8%, respectively under AgNPs exposure at 1000 mg L−1 dose. Meanwhile, biochar at all exposure level of AgNPs decreased the bioaccumulation of Ag in rice root and shoot tissues, thus alleviated the phyto-toxic effects of NPs on plant growth. Moreover, results showed that biochar reduced the bioavailability of AgNPs by surface complexation, suppressing dissolution and release of toxic Ag+ ions in the growth medium. The presence of biochar at least decreased 2-fold tissue contents of Ag even at highest AgNPs (1000 mg L−1) concentration. These finding suggested that biochar derived from waste biomass resources can be used effectively to prevent the bioaccumulation and subsequent trophic level transfer of emerging Ag nano-pollutant in the environment.
Mostrar más [+] Menos [-]Effects of triphenyl phosphate exposure during fetal development on obesity and metabolic dysfunctions in adult mice: Impaired lipid metabolism and intestinal dysbiosis
2019
Wang, Dezhen | Yan, Sen | Yan, Jin | Teng, Miaomiao | Meng, Zhiyuan | Li, Ruisheng | Zhou, Zhiqiang | Zhu, Wentao
Previous in vitro studies have implied that triphenyl phosphate (TPHP) may act as an obesogen. However, its specific contributions to the progression of obesity and related metabolic diseases are still unclear in vivo in mice. In this study, we evaluated the effects of in utero and lactational exposure to three doses of TPHP (10, 100, and 1000 μg/kg BW) on obesity and metabolic dysfunctions in adult male mice fed a low-fat diet (LFD) or high-fat diet (HFD), by examining body weight, liver weight, histopathology, blood biochemistry, gene expression, and gut microbiota compositions and metabolic functions. Results showed that TPHP exposure led to increased body weight, liver weight, fat mass, hepatic steatosis, impaired glucose homeostasis, and insulin resistance, and mRNA levels of genes involved in lipid metabolism, especially lipogenesis and lipid accumulation, were significantly altered by TPHP treatment. Gas chromatography-mass spectrometry (GC-MS) analysis further supported the changes in fatty acid composition. Intestinal flora measurements by 16S rRNA gene sequencing and ¹H NMR based fecal metabolomics indicated that TPHP treatment modulated gut microbiome composition and influenced host-gut co-metabolism, especially for bile acids and short chain fatty acids (SCFAs). These results suggest that fetal exposure to TPHP can promote the development of obesity and metabolic dysfunctions in adult mice.
Mostrar más [+] Menos [-]Effects of fluoride on the histology, lipid metabolism, and bile acid secretion in liver of Bufo gargarizans larvae
2019
Wang, Xianchan | Zheng, Rui | Yao, Qiong | Liang, Zhijia | Wu, Minyao | Wang, Hongyuan
In our study, Bufo gargarizans (B. gargarizans) larvae were exposed to control, 0.5, 5, 10 and 50 mg/L of NaF from Gs 26 to 42. At Gs 42, we evaluated the changes of liver histology and the mRNA levels of target genes in liver. In addition, we also examined the composition and content of fatty acids. Histological analysis revealed that fluoride caused liver injury, such as the increase of number of melanomacrophage centres, atrophy of nucleus, dilation of bile canaliculus, and decrease of quantity, degradation and deposition of lipid droplets. The results of RT-qPCR indicated that exposure to 5, 10 and 50 mg/L of NaF significantly decreased the transcript levels of genes related to fatty acid synthesis (FASN, FAE, MECR, KAR and TECR) in liver. Besides, mRNA expression of genes involved in fatty acid β-oxidation (ECHS1, HADHA, SCP2, CPT2, ACAA1 and ACAA2) and oxidative stress (SOD, GPx, MICU1 and HSP90) was significantly downregulated in 0.5, 5, 10 and 50 mg/L of NaF treatment groups. Also, in the relative expression of genes associated with synthesis and secretion of bile acid, BSEP significantly increased at 0.5, 5 and 50 mg/L of NaF while HSD3B7 significantly reduced in 0.5, 5, 10 and 50 mg/L of NaF. Finally, the fatty acid extraction and GC-MS analysis showed that the content of saturated fatty acids (SFAs) was decreased and the content of polyunsaturated fatty acids (PUFAs) was increased in all fluoride treatment groups. Taken together, the present results indicated that fluoride-induced the histological alterations of liver might be linked to the disorder of lipid metabolism, oxidative damage.
Mostrar más [+] Menos [-]Microplastic pollution in estuaries across a gradient of human impact
2019
Hitchcock, James N. | Mitrovic, Simon M.
Microplastic (MP) pollution is an emerging issue in aquatic sciences. Little comparative information currently exists about the problem in coastal systems exposed to different levels of human impact. Here we report a year-long study on the abundance of MP in the water column of three estuaries on the east-coast of Australia. The estuaries are subject to different scales of human impact; the Clyde estuary has little human modification, the Bega estuary has a small township and single wastewater treatment works discharging to its waters, and the Hunter estuary which has multiple townships, multiple wastewater treatment plants, and heavy industry. MP abundance followed an expected pattern with the lowest abundance in the low-impact Clyde estuary (98 part. m³), moderate levels of MP in the moderately impacted Bega estuary (246 part. m³), and high MP abundance in the highly impacted Hunter estuary (1032 part. m³). The majority of particles were <200 μm and fragment-like rather than fiber-like. MP abundance was positively related to maximum antecedent rainfall in the Bega estuary, however there are no clear environmental factors that could explain MP variation in the other systems. MP were generally higher in summer and following freshwater inflow events. On the Hunter estuary MP abundance was at times as high as zooplankton abundance, and within the range of numbers reported in other highly impacted systems globally. The results confirm that higher levels of human impact lead to greater plastic pollution and highlight the need to examine aquatic ecosystems under a range of conditions in order to adequately characterize the extent of MP pollution in rivers and coastal systems.
Mostrar más [+] Menos [-]Three-dimensional graphene/titanium dioxide composite for enhanced U(VI) capture: Insights from batch experiments, XPS spectroscopy and DFT calculation
2019
Efficient containment and capture of uranium (U(VI)) from aqueous solution is an essential component to ensure socially and environmentally sustainable development. Herein, the three-dimensional graphene/titanium dioxide composite (3D GA/TiO₂) was synthesized and applied as an effective adsorbent to remove U(VI) from wastewater as a function of contact time, temperature, pH and ion strength. The 3D GA/TiO₂ material was characterized by X-ray diffraction, Raman spectroscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The batch experiments results indicated that the adsorption of U(VI) on materials were fitted with the pseudo-second order kinetics and Langmuir models. More specifically, 3D GA/TiO₂ (441.3 mg/g) was observed to outperform the GO (280.0 mg/g), rGO (140.9 mg/g) and TiO₂ (98.5 mg/g) at pH 5.0, which was attributable to the excellent cooperative effects. Furthermore, XPS analyses and DFT calculations confirmed the formation of surface complexes between oxygen-containing group and U(VI) with the U–O bonds length of 2.348 Å (U–O1) and 2.638 Å (U–O2). Meanwhile, the adsorption energy was calculated to be 1.60 eV, which showed a very strong chemisorption during the interaction process. It is believed that the 3D GA/TiO₂ revealed good removal performance for uranyl ions, which showed a great potential application to control the nuclear industrial pollution.
Mostrar más [+] Menos [-]Athabasca oil sands region snow contains efficient micron and nano-sized ice nucleating particles
2019
The Athabasca Oil Sands Region (AOSR) in Alberta, Canada, is an important source of atmospheric pollutants, such as aerosols, that have repercussions on both the climate and human health. We show that the mean freezing temperature of snow-borne particles from AOSR was elevated (−7.1 ± 1.8 °C), higher than mineral dust which freezes at ∼ −15 °C and is recognized as one of the most relevant ice nuclei globally. Ice nucleation of nanosized snow samples indicated an elevated freezing ability (−11.6 ± 2.0 °C), which was statistically much higher than snow-borne particles from downtown Montreal. AOSR snow had a higher concentration (∼2 orders of magnitude) of >100 nm particles than Montreal. Triple quadrupole ICP-(QQQ)-MS/MS analysis of AOSR and Montreal snow demonstrated that most concentrations of metals, including those identified as emerging nanoparticulate contaminants, were much more elevated in AOSR in contrast to Montreal: 34.1, 34.1, 16.6, 5.8, 0.3, 0.1, and 9.4 mg/m³ for Cr, Ni, Cu, As, Se, Cd, and Pb respectively, in AOSR and 1.3, 0.3, 2.0, <0.03, 0.1, 0.03, and 1.2 mg/m³ in Montreal snow. High-resolution Scanning Transmission Electron Microscopy/Energy-dispersive X-ray Spectroscopy (STEM-EDS) imaging provided evidence for various anthropogenic nano-materials, including carbon nanotubes resembling structures, in AOSR snow up to 7–25 km away from major oil sands upgrading facilities. In summary, particles characterized as coming from oil sands are more efficient at ice nucleation. We discuss the potential impacts of AOSR emissions on atmospheric and microphysical processes (ice nucleation and precipitation) both locally and regionally.
Mostrar más [+] Menos [-]One year exposure to Cd- and Pb-contaminated soil causes metal accumulation and alteration of global DNA methylation in rats
2019
Nakayama, Shouta M.M. | Nakata, Hokuto | Ikenaka, Yoshinori | Yabe, John | Oroszlany, Balazs | Yohannes, Yared B. | Bortey-Sam, Nesta | Muzandu, Kaampwe | Choongo, Kennedy | Kuritani, Takeshi | Nakagawa, Mitsuhiro | Ishizuka, Mayumi
Metal pollution has been associated with anthropogenic activities, such as effluents and emissions from mines. Soil could be exposure route of wild rats to metals, especially in mining areas. The aim of this study was to verify whether soil exposure under environmentally relevant circumstances results in metal accumulation and epigenetic modifications. Wistar rats were divided to three groups: 1) control without soil exposure, 2) low-metal exposure group exposed to soil containing low metal levels (Pb: 75 mg/kg; Cd: 0.4), and 3) high-metal exposure group exposed to soil (Pb: 3750; Cd: 6). After 1 year of exposure, the metal levels, Pb isotopic values, and molecular indicators were measured. Rats in the high-group showed significantly greater concentrations of Pb and Cd in tissues. Higher accumulation factors (tissue/soil) of Cd than Pb were observed in the liver, kidney, brain, and lung, while the factor of Pb was higher in the tibia. The obtained results of metal accumulation ratios (lung/liver) and stable Pb isotope ratios in the tissues indicated that the respiratory exposure would account for an important share of metal absorption into the body. Genome-wide methylation status and DNA methyltransferase (Dnmt 3a/3b) mRNA expressions in testis were higher in the high-group, suggesting that exposure to soil caused metal accumulation and epigenetic alterations in rats.
Mostrar más [+] Menos [-]Adsorption and fractionation of Pt, Pd and Rh onto inorganic microparticles and the effects of macromolecular organic compounds in seawater
2019
Adsorption and fractionation of Pt, Pd and Rh (defined here as platinum group elements, PGEs) onto the representative inorganic microparticles, including Fe2O3, MnO2, CaCO3, SiO2, Al2O3 and kaolinite in seawater were investigated. The effects of macromolecular organic compounds (MOCs) as the representatives of organic matter, including humic acids (HA), bovine serum albumin (BSA) and carrageenan, on the adsorption were also studied considering that organic matter is ubiquitous in seawater and indispensable to marine biogeochemical cycles. In the absence of MOCs, the representative mineral particles Fe2O3 and MnO2 had the strongest interaction with PGEs. The adsorption of PGEs onto the representative biogenic particles SiO2 and CaCO3 and lithogenic particles Al2O3 and kaolinite was similar or weaker than onto the mineral particles. MOCs inhibited the interaction between PGEs and the particles except for Pt and Pd onto the biogenic particles in artificial seawater. This impediment may be closely related to the interaction between particles, MOCs and elements. The partition coefficient (log Kd) of Pt was similar (∼4.0) in the presence of MOCs, indicating that the complexation between Pt and MOCs was less important than hydrolysis or adsorption onto the acid oxide particle surface. Rh tended to fractionate onto the mineral and lithogenic particles in the presence of HA and carrageenan, while Pd was more likely to fractionate onto the biogenic particles. However, BSA enhanced the fractionation tendency of Pd onto the mineral particles. The results indicate that the adsorption behavior of Pd onto inorganic particles was significantly affected by the composition or the type of MOCs. Hence, the interaction between PGEs and inorganic particles may be greatly affected by the macromolecular organic matter in the ocean.
Mostrar más [+] Menos [-]