Refinar búsqueda
Resultados 1-10 de 18
Irrigation water and food safety
2006
Biavati, B. | Mattarelli, P.
Seventy-one percent of the earth surfaces is covered by oceans. Water therefore is an important habitat for microorganisms and the other living beings. A consistent microbial biodiversity is present in water from phototrophs to chemioorganotrophs. The complex relationships between different microorganisms and the environment are often modified by organic, chemical and physic contaminations. The input of organic material can determine pathogenic pollution. The presence of pathogens has to be monitored to eliminate serious problems for animal and human health. Water, in fact, can be a vehicle direct (drinking water) or indirect (irrigation water) for microbial pathogens | Il 71% della superficie terrestre è costituito dagli oceani. L'acqua pertanto è un importante ambiente per i microrganismi, oltre che per tutti gli altri esseri viventi. Una grande varietà di tipi microbici colonizzano l'habitat acquatico, dai fototrofi ai chemiorganotrofi. Le dinamiche che si creano fra i diversi componenti microbici e l'ambiente sono spesso alterate da contaminazioni organiche, chimiche e fisiche. L'immissione di materiale organico può anche essere fonte di inquinamento di microrganismi patogeni la cui presenza va monitorata al fine di evitare seri problemi alla salute umana e animale. L'acqua, infatti, può rappresentare un veicolo di trasferimento, sia diretto (acqua potabile), sia indiretto (acque di irrigazione), di microrganismi patogeni
Mostrar más [+] Menos [-]Destruction of representative submarine food waste using supercritical water oxidation Texto completo
2015
In this study, 13 types of organic materials were oxidized using H₂O₂in a continuous flow reactor under the condition of supercritical water. The effect of the operational parameters on the conversion of total organic carbon (TOC) and total nitrogen (TN) was investigated, and the resulting quality of treated water was analyzed. It was found that these materials were easily oxidized with a TOC conversion achieving 99 % at temperature of 460 °C and TN conversion reaching 94 % at temperature of 500 °C. Rice decomposition was rapid, with TOC and TN decomposition rates of 99 % obtained within residence of 100 s at temperature of 460 °C. At temperature of 460 °C, pressure of 24 MPa, residence time of 100 s, and excess oxygen of 100 %, the quality of treated water attained levels commensurate with China’s Standards for Drinking Water Quality. Reaction rate equation parameters were obtained by fitting the experimental data to the differential equation obtained using the Runge–Kutta algorithm. The decrease of the TOC in water samples exhibited reaction orders of 0.95 for the TOC concentration and 0.628 for the oxygen concentration. The activation energy was 83.018 kJ/mol.
Mostrar más [+] Menos [-]Novel water-resistant UV-activated oxygen indicator for intelligent food packaging Texto completo
2013
Vu, Chau Hai Thai | Won, Keehoon
For the first time, alginate polymer has been applied to prevent dyes from leaching out of colorimetric oxygen indicator films, which enable people to notice the presence of oxygen in the package in an economic and simple manner. The dye-based oxygen indicator film suffers from dye leaching upon contact with water. In this work, UV-activated visual oxygen indicator films were fabricated using thionine, glycerol, P25 TiO2, and zein as a redox dye, a sacrificial electron donor, UV-absorbing semiconducting photocatalyst, and an encapsulation polymer, respectively. When this zein-coated film was immersed in water for 24h, the dye leakage was as high as 80.80±0.45%. However, introduction of alginate (1.25%) as the coating polymer considerably diminished the dye leaching to only 5.80±0.06%. This is because the ion-binding ability of alginate could prevent the cation dye from leaching into water. This novel water-resistant UV-activated oxygen indicator was also successfully photo-bleached and regained colour fast in the presence of oxygen.
Mostrar más [+] Menos [-]Applications of Light-Emitting Diodes (LEDs) in Food Processing and Water Treatment Texto completo
2020
Prasad, Amritha | Du, Lihui | Zubair, Muhammad | Subedi, Samir | Ullah, Aman | Roopesh, M. S.
Light-emitting diode (LED) technology is an emerging nonthermal food processing technique that utilizes light energy with wavelengths ranging from 200 to 780 nm. Inactivation of bacteria, viruses, and fungi in water by LED treatment has been studied extensively. LED technology has also shown antimicrobial efficacy in food systems. This review provides an overview of recent studies of LED decontamination of water and food. LEDs produce an antibacterial effect by photodynamic inactivation due to photosensitization of light absorbing compounds in the presence of oxygen and DNA damage; however, such inactivation is dependent on the wavelength of light energy used. Commercial applications of LED treatment include air ventilation systems in office spaces, curing, medical applications, water treatment, and algaculture. As low penetration depth and high-intensity usage can challenge optimal LED treatment, optimization studies are required to select the right light wavelength for the application and to standardize measurements of light energy dosage.
Mostrar más [+] Menos [-]Quality improvement of processed food using superheated steam and hot water spray
2010
Sotome, I, National Food Research Inst., Tsukuba, Ibaraki (Japan) | Isobe, S.
Improved water resistance inedible zein films and composites for biodegradable food packaging
1995
Yamada, K. | Takahashi, H. | Noguchi, A.
Zein, corn prolamine, was dissolved in several organic solvents to make films and their properties were examined. Ethanol with 20% water and acetone with 30% water were found to dissolve zein well and transform it into a transparent flexible film after moderate drying. Both films showed similar breaking strength to that of commercial thin film of polyvinylidene chloride for food use and were digested with proteases. Only the film prepared from acetone solution showed a relatively low water permeability. This water permeation was found to depend strongly on the rate of diffusion. 1,2-Epoxy-3-chloropropane (ECP) was added into the acetone solution to cross-link the zein molecules for the purpose of improving the breaking strength and water-resistant properties of the film. Alpha-chymotrypsin was found to digest the film even after the modification with ECP. However, this cross-linking resulted in little improvement in the water-resistant properties of the film and also reduced its flexibility.
Mostrar más [+] Menos [-]Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture Texto completo
2018
Thirumdas, Rohit | Kothakota, Anjinelyulu | Annapure, Uday | Siliveru, Kaliramesh | Blundell, Renald | Gatt, Ruben | Valdramidis, Vasilis P.
Cold plasma is an emerging non-thermal disinfection and surface modification technology which is chemical free, and eco-friendly. Plasma treatment of water, termed as plasma activated water (PAW), creates an acidic environment which results in changes of the redox potential, conductivity and in the formation of reactive oxygen (ROS) and nitrogen species (RNS). As a result, PAW has different chemical composition than water and can serve as an alternative method for microbial disinfection.This paper reviews the different plasma sources employed for PAW generation, its physico-chemical properties and potential areas of PAW applications. More specifically, the physical and chemical properties of PAW are outlined in relation to the acidity, conductivity, redox potential, and concentration of ROS, RNS in the treated water. All these effects are in microbial nature, so the applications of PAW for microbial disinfection are also summarized in this review. Finally, the role of PAW in improving the agricultural practices, for example, promoting seed germination and plant growth, is also presented.PAW appears to have a synergistic effect on the disinfection of food while it can also promote seedling growth of seeds. The increase in the nitrate and nitrite ions in the PAW could be the main reason for the increase in plant growth. Soaking seeds in PAW not only serves as an anti-bacterial but also enhances the seed germination and plant growth. PAW could potentially be used to increase crop yield and to fight against the drought stress environmental conditions.
Mostrar más [+] Menos [-]Recent progress in the application of plasma-activated water (PAW) for food decontamination Texto completo
2021
Wang, Qingyang | Salvi, Deepti
Plasma-activated water (PAW) is a novel and promising alternative to traditional food sanitizers. Recently, the inactivation efficacy of PAW has been demonstrated on a wide range of food products against foodborne pathogens, spoilage microorganisms, and harmful chemicals. The effectiveness of PAW relies on various factors related to the plasma generation mechanisms, the target microorganisms, and the food matrix. The inactivation mechanisms of PAW are attributed to the damage of cell integrity and intracellular components by various reactive oxygen and nitrogen species (RONS). Utilization of plasma-activated liquids and hurdle technologies can enhance the inactivation efficacy and diversify the application of this technology. Scaling-up of PAW is still at the very beginning stage and needs further studies before industrial application.
Mostrar más [+] Menos [-]Efficacy optimization of plasma-activated water for food sanitization through two reactor design configurations Texto completo
2021
Hadinoto, Koentadi | Astorga, Javiera Barrales | Masood, Hassan | Zhou, Renwu | Alam, David | Cullen, P. J. (Patrick J.) | Prescott, Stuart | Trujillo, Francisco J.
The chemistry, antimicrobial efficacy and energy consumption of plasma-activated water (PAW) was optimized by altering the discharge frequency, ground-electrode configuration, gas flow rate and initial water conductivity for two reactor configurations, i.e., air pin-to-liquid discharge and air plasma-bubble discharge in water. The ratio of NO₂⁻ and NO₃⁻ formation was altered to optimise the antimicrobial effects of PAW, tested against two Gram-negative bacteria. An initial solution conductivity of 0.2 S·m⁻¹ and 2000-Hz discharge frequency with the ground electrode positioned inside the pin reactor showed the highest antimicrobial effect resulting in a 3.99 ± 0.13-log₁₀ reduction within 300 s against Escherichia coli and 5.90 ± 0.24-log₁₀ reduction within 240 s for Salmonella Typhimurium. An excellent energy efficiency of reactive oxygen and nitrogen species (RONS) generation of 10.1 ± 0.1 g·kW⁻¹·h⁻¹ was achieved.Plasma-activated water (PAW) is deemed as an eco-friendly alternative to chemical disinfection because its bactericidal activity is temporary. Optimizing the design and operation of PAW reactors to achieve high inactivation rates of more than 5-log₁₀ reductions, as demonstrated in this work, will support the industrial application of this technology and the scaleup at industrial level.
Mostrar más [+] Menos [-]Multilayers of Renewable Nanostructured Materials with High Oxygen and Water Vapor Barriers for Food Packaging Texto completo
2022
Pasquier, Eva | Mattos, Bruno D. | Koivula, Hanna | Khakalo, Alexey | Belgacem, Mohamed Naceur | Rojas, Orlando J. | Bras, Julien
Natural biopolymers have become key players in the preparation of biodegradable food packaging. However, biopolymers are typically highly hydrophilic, which imposes limitations in terms of barrier properties that are associated with water interactions. Here, we enhance the barrier properties of biobased packaging using multilayer designs, in which each layer displays a complementary barrier function. Oxygen, water vapor, and UV barriers were achieved using a stepwise assembly of cellulose nanofibers, biobased wax, and lignin particles supported by chitin nanofibers. We first engineered several designs containing CNFs and carnauba wax. Among them, we obtained low water vapor permeabilities in an assembly containing three layers, i.e., CNF/wax/CNF, in which wax was present as a continuous layer. We then incorporated a layer of lignin nanoparticles nucleated on chitin nanofibrils (LPChNF) to introduce a complete barrier against UV light, while maintaining film translucency. Our multilayer design which comprised CNF/wax/LPChNF enabled high oxygen (OTR of 3 ± 1 cm³/m²·day) and water vapor (WVTR of 6 ± 1 g/m²·day) barriers at 50% relative humidity. It was also effective against oil penetration. Oxygen permeability was controlled by the presence of tight networks of cellulose and chitin nanofibers, while water vapor diffusion through the assembly was regulated by the continuous wax layer. Lastly, we showcased our fully renewable packaging material for preservation of the texture of a commercial cracker (dry food). Our material showed functionality similar to that of the original packaging, which was composed of synthetic polymers.
Mostrar más [+] Menos [-]