Affiner votre recherche
Résultats 11-20 de 32
Review of the toxic effects and health functions of arecoline on multiple organ systems
2024
Huiling Liu | Hao Zheng | Jiachao Zhang | Fang Chen | Xiaosong Hu | Xiaofei Wang
Arecoline, the principal active alkaloid in the areca nut, is known for its ability to induce euphoric sensations. Since ancient times, arecoline has garnered attention for its therapeutic potential in addressing psychiatric disorders and alleviating gastrointestinal ailments. However, in 2020, the International Agency for Research on Cancer has classified arecoline as 'probably carcinogenic to humans' (Group 2B carcinogen), supported by compelling mechanistic evidence. The mechanism of action of arecoline has been extensively studied, but the results of these studies are scattered and lack systematic integration and generalization. In this paper, we have systematically summarized the mechanism of arecoline within the oral cavity, central nervous system, cardiovascular system, and digestion system, in terms of both health functions and toxic effects. In addition, we found some concentration-effect relationship between arecoline in the central nervous system and digestive system, i.e., low doses are beneficial and high doses are harmful. By summarizing the mechanisms of arecoline, this review is poised to provide in-depth and valuable insights into the clinical practice and targeted therapy of arecoline in the future.
Afficher plus [+] Moins [-]Nanoencapsulation of volatile plant essential oils: a paradigm shift in food industry practices
2024
Arooj Rehman Sheikh | Ricardo A. Wu-Chen | Anam Matloob | Muhammad Huzaifa Mahmood | Miral Javed
Essential oils (EOs) are plant aromas used in the food industry. They have attracted considerable attention due to their diverse properties, i.e., antimicrobial, antifungal, and antioxidant activities, with natural aroma and flavor as beneficial food additives. However, the instability, degradability, and hydrophobicity of EOs have limited their practical use in the food industry. Nanoencapsulation, a process where EOs are enclosed in a protective shell at the nanoscale, promises to enhance the biological properties of EOs. This process empowers EOs with excellent physiochemical stability and solubility, allowing for better distribution in food systems and controlled release for prolonged availability of EOs without rapid evaporation and instability. This review summarizes the recent works on encapsulating EOs to enhance their biological properties, providing a comprehensive overview of various specific nano-carriers and their applications in the food industry.
Afficher plus [+] Moins [-]Comparing the appearance and phytochemical characterization of dried lily (L. davidii var. unicolor) bulbs processed by different drying technologies
2024
Lu Mi | Shini Yang | Xue Wang | Lei Xu | Yuhong Lin | Shuming Yang | Zhenzhen Xu
Lily bulbs are valued for their health benefits, and drying is a common method for their preservation. This study employed untargeted metabolomics using UHPLC-QTOF-MS to analyze the phytochemical profiles of lily bulbs dried by hot air (HD), microwave (MD), and vacuum freeze (FD) methods. In terms of appearance, FD samples exhibited minimal browning and wrinkling, while HD bulbs showed the most severe changes. Nineteen potential markers were identified, with HD samples showing higher levels of bitter amino acids, peptides, and N-fructosyl phenylalanine. The markers of FD samples were glutamine, coumarin, and p-coumaric acid. Notably, eleutheroside E was detected in lily bulbs for the first time and confirmed as an MD marker, with levels 1.51-fold and 6.19-fold higher than in FD and HD samples, respectively. MD method shows promise for enriching bioactive compounds in dried lily bulbs.
Afficher plus [+] Moins [-]Recent progress and prospects in production and identification of umami peptides from marine proteins
2024
Di Hu | Zhenxiao Zheng | Botao Liang | Yating Jin | Cui Shi | Qianqian Chen | Lai Wei | Dongcheng Li | Chengcheng Li | Jing Ye | Zhiyuan Dai | Xiaoli Dong | Yanbin Lu
Umami peptides, the flavor compounds mainly derived from natural proteins, provide a pleasant taste for humans and exhibit a variety of biological activities, such as antioxidant and lipid-lowering properties. Marine proteins, which serve as excellent sources of umami peptides, have become a focal point of research. This review introduces the research progress on reported marine umami peptides. Firstly, it discusses the structural characteristics of umami peptides and the mechanism behind their formation to create an umami taste. It then presents several commonly used techniques for preparing and regulating umami peptides while summarizing the advantages and disadvantages of each technique. Finally, this review describes the potential application prospects for core technologies within Industry 4.0—such as molecular simulation, artificial intelligence, big data analysis, cloud computing, and blockchain technology—which could bring new opportunities for the development of marine umami peptides.
Afficher plus [+] Moins [-]Protection mechanism of β-carotene on the chlorophyll photostability through aggregation: a quantum chemical perspective
2024
Fangwei Li | Suxia Shen | Zhaotian Yang | Jinghao Zhang | Ajibola Nihmot Ibrahim | Yan Zhang
Chlorophyll (Chl), the most widely distributed natural pigment in nature, is limited in use due to its poor stability. This study refers to the aggregation structure of Chl and carotene (Car) in natural photosynthetic systems, hoping to improve the photostability of Chl by constructing Chl/Car aggregates. The stability protection effect of Car on Chl was explored by designing different ratios of Chl and Car aggregation systems. The configuration of Chl/Car aggregates was optimized through ab initio molecular dynamics, and the aggregation mechanism of the aggregates and the photoprotection mechanism of Chl by Car were elucidated through quantum chemical calculations and wave function analysis. Chl/Car had a 27.22% higher Chl retention rate than free Chl after 7 d of illumination, with a Chl to Car ratio of 1.66:1. A configuration of the Chl/Car aggregates which Car's conjugated olefin chain interacts extensively with the porphyrin ring and bent phytyl chain of Chl made them more stable. The photoprotective mechanism of Car on Chl in the Chl/Car aggregates is elucidated. Car's conjugated polyene chain provides HOMO orbitals to the Chl/Car aggregates. It demonstrated that Car supplies electrons in the low-lying excited states S2 and S4, indicating it is more susceptible to damage, protecting Chl. This research will promote the development of natural color formulas and ensure the health of consumers.
Afficher plus [+] Moins [-]Storage and thermal stability of selected vegetable purees processed with microwave-assisted thermal sterilization
2024
Zeyad Albahr | Juthathip Promsorn | Zhongwei Tang | Girish M. Ganjyal | Juming Tang | Shyam S. Sablani
The impact of microwave-assisted thermal sterilization (MATS) on three natural pigments and their storage stability in vegetable purees was investigated. We selected carrot puree for beta carotene, red cabbage puree for anthocyanins, and red beetroot puree for betalains. The purees were packaged in multilayer flexible pouches of AlOx-coated PET (12 μm)//AlOx-coated PET (12 μm)//AlOx-coated PET (12 μm)//ONy (15 μm)//CPP (70 μm), then processed with the MATS system to Fo = 6 to 11 min. After MATS treatment, the pouches were stored for 6 months at a storage temperature of 37.8 °C. The MATS treatment had a significant impact (p < 0.05) on the instrumental colors of three purees, with the total color difference (ΔE) ranging between 6.0 and 10.5. Similarly, the concentration of betalains experienced degradation by 20%−29% after the MATS treatment, while beta-carotene concentration showed a high retention. In addition, the pH of the purees declined considerably (p < 0.05) after the MATS treatment. Over the 6 months of storage at 37.8 °C, the PET-metal oxide pouches maintained the moisture content in all the purees, as the weight loss was only 0.43%−0.45%. The pigments in the MATS-processed purees had different levels of stability; ΔE values varied between 4.23 and 12.3. Beta-carotene was the most stable pigment, followed by betalains and anthocyanins. The degradation of both betalains and anthocyanins during storage was explained by first and fractional conversion models. MATS processing and packages with high gas barriers can therefore be used to preserve selected vegetable purees rich in natural pigments.
Afficher plus [+] Moins [-]Study on fermentation kinetics, antioxidant activity and flavor characteristics of Lactobacillus plantarum CCFM1050 fermented wolfberry pulp
2024
Hailong Liu | Na Li | Yutong Wang | Tianyu Cheng | Hua Yang | Qiang Peng
As a superfruit, wolfberry has extremely high nutritional value, and how to enhance the accessibility of its nutrients is the core of current research. This study focused on exploring the kinetic model of Lactobacillus plantarum CCFM1050 fermentation of wolfberry and the potential alterations of antioxidant activity and volatile flavor compounds induced by lactic acid fermentation. we monitored cell counts, product formation, and substrate changes over a 72-h period of wolfberry fermentation. A kinetic model was developed to illustrate cell growth, substrate consumption, and product accumulation during wolfberry pulp fermentation. Phenolic substance analysis revealed a significant increase in total phenol and flavonoid content in wolfberry pulp during fermentation, reaching 1.16 and 1.15 times, respectively, compared to pre-fermentation levels. The elevated levels of phenolic substances led to a substantial increase in DPPH and ABTS free radical scavenging rates in fermented wolfberry pulp, reaching 67.16% and 32.10%, respectively. Volatile components of samples were analyzed using the HS-GC-IMS method, and fingerprints of wolfberry pulp before and after fermentation were established. A total of 51 compounds were identified, including 12 alcohols, seven aldehydes, two acids, eight esters, and 12 ketones, contributing to an enhanced flavor profile in the fermented wolfberry pulp. This study is helpful for understanding the kinetic changes in the lactic acid fermentation of wolfberry, the changes of antioxidant active substances and VOCs, and provides guidance for the industrial processing of wolfberry.
Afficher plus [+] Moins [-]Chemical, rheological, and volatile profiling of microalgae Arthrospira, Isochrysis, Nannochloropsis, and Tetraselmis species
2024
Johannes Magpusao | Indrawati Oey | Biniam Kebede
Microalgae are increasingly regarded as a sustainable source of novel food and functional products due to their nutritional composition. This study aimed to conduct an in-depth analysis of the chemical, microstructural and rheological, and volatile-flavour related properties of Arthrospira, Isochrysis, Nannochloropsis, and Tetraselmis species. Chemometric data analysis was employed to integrate the multivariate data, investigate the classification among the four species, and identify discriminating and distinct features. Arthrospira is high in protein content, and Nannochloropsis is lipid-rich with dominantly polyunsaturated fatty acids. Isochrysis is rich in carotenoids and total phenolics, while Tetraselmis is high in carbohydrates. Key discriminant volatile markers encompass aldehydes, terpenes, and hydrocarbons for Arthrospira; ketones and alcohols for Nannochloropsis; aldehydes, ketones, and sulfur-containing compounds for Tetraselmis; and furans and aldehydes for Isochrysis. Moreover, Arthrospira and Isochrysis demonstrate elevated viscosity and notable thickening potential. In summary, the different microalgal biomass studied in this study showcase unique compositional, rheological, and volatile properties, highlighting their potential as functional ingredients for diverse applications in the food and pharmaceutical industries.
Afficher plus [+] Moins [-]Biological control and other alternatives to chemical fungicides in controlling postharvest disease of fruits caused by Alternaria alternata and Botrytis cinerea
2024
Fredy Agil Raynaldo | Yanqun Xu | Yolandani | Qingqing Wang | Bin Wu | Dong Li
Alternaria alternata and Botrytis cinerea are among the primary fungal pathogens of fruits, causing black spot and gray mold disease, respectively. They cause serious losses in yield as well as affect fruit quality. Controlling fruit postharvest diseases largely relies on the use of chemical fungicides. However, the overuse of fungicides makes the produce unsafe due to their residual effects on the environment and human health. Therefore, significant advancements are necessary to investigate and find sustainable ways to prevent postharvest disease of fruits and minimize postharvest losses. This review summarizes the recent developments in the application of biological control and other sustainable approaches in managing fruit postharvest diseases, with an emphasis on A. alternata and B. cinerea, respectively. Furthermore, several action mechanisms, challenges, and prospects for the application of biological control agents (BCAs) are also discussed. Biological control application has been proven to successfully reduce postharvest disease of fruits caused by A. alternata and B. cinerea. In recent years, it has gradually changed from being primarily an independent field to a more crucial part of integrated pest management. Due to their characteristics that are safe, eco-friendly, and non-toxic, several BCAs have also been developed and commercialized. Therefore, biological control has the potential to be a promising approach to replace the use of chemical fungicides in controlling postharvest disease of fruits.
Afficher plus [+] Moins [-]Enhancing the thermostability of carboxypeptidase A by rational design of disulfide bonds
2024
Haoxiang Zhang | Zitong Zhao | Meijun Zhu | Antonio F. Logrieco | Honglei Wang | Zhihong Liang
Carboxypeptidase A(CPA) has a great potential application in the food and pharmaceutical industry due to its capability to hydrolyze ochratoxin A(OTA) and remove the bitterness of peptide. However, CPA is a mesophilic enzyme that cannot adequately exert its catalytic activity at elevated temperatures, which seriously restricts its industrial application. In this study, the rational design of disulfide bonds was introduced to improve the thermostability of CPA. The highly flexible regions of CPA were predicted through the HotSpot Wizard program and molecular dynamics (MD) simulations. Then, DbD and MODIP online servers were conducted to predict potential residue pairs for introducing disulfide bonds in CPA. After the conservativeness analysis of the PSSM matrix and the structural analysis of the MD simulation, two mutants with potentially enhanced thermostability were screened. Results showed that these mutants D93C/F96C and K153C/S251C compared to the wild-type(WT) exhibited increase by 10 and 10 °C in Topt, 3.4 and 2.7 min in t1/2 at 65 °C, in addition to rise of 8.5 and 11.4 °C in T5015, respectively. Furthermore, the molecular mechanism responsible for thermostability was investigated from the perspective of advanced structure and molecular interactions. The enhanced thermostability of both mutants was not only associated with the more stable secondary structure and the introduction of disulfide bonds but also related to the changes in hydrogen bonds and the redistribution of surface charges in mutant regions. This study showed for the first time that the rational design of disulfide bonds is an effective strategy to enhance the thermostability of CPA, providing in this way a broader industrial application.
Afficher plus [+] Moins [-]