Уточнить поиск
Результаты 1-10 из 149
The effect of sewage sludge containing microplastics on growth and fruit development of tomato plants
2021
Hernández-Arenas, Ricardo | Beltrán-Sanahuja, Ana | Navarro-Quirant, Paula | Sanz-Lazaro, Carlos
Microplastics (MPs) are becoming an environmental growing concern, being the sewage sludge applied to agriculture fields one of the most important inputs to the environment. To date, there is no standardized protocol for their extraction and changes in vegetative growth and fruit maturation on cultivated plants induced by sludge containing MPs have not been studied yet. Sewage sludge from three different wastewater treatment plants located in Murcia, Spain, were studied. First, the microplastic concentration was estimated and, then, the effects of the sewage sludge in the development of tomato plants and fruit production was analyzed. The measured parameters in tomato plants were both, biomass and length, for shoot and root part, as well as, stem diameter and tomato production. The present work has developed and validated a protocol for the extraction and quantification of MPs comprising several shapes, materials and sizes from samples of sewage sludges, which offers a good compromise for the extraction of different types of microplastic. The protocol used for MPs extraction had a recovery efficiency of 80 ± 3% (mean ± SE) and used bicarbonate, to maximize MPs extraction. The mean abundance of MPs in the studied sewage sludge samples was 30,940 ± 8589 particles kg⁻¹ dry weight. Soils with sludge containing MPs fostered the growth of tomato plants, while delaying and diminished fruit production. However, other factors or their interactions with MPs could have influenced the outcomes. Further studies are necessary to corroborate these findings and explain the mechanisms of possible effects of MPs on plants.
Показать больше [+] Меньше [-]Geochemical factors controlling the occurrence of high-fluoride groundwater in the western region of the Ordos basin, northwestern China
2019
Su, He | Wang, Jiading | Liu, Jingtao
Hydrogeochemistry and isotope hydrology were carried out to investigate the spatial distribution of fluoride (F−) and the mechanisms responsible for its enrichment in the western region of the Ordos basin, northwestern China. Sixty-two groundwater samples from the unconfined aquifer and fifty-six from confined aquifer were collected during the pre-monsoon (June 2016). Over 77% of groundwater samples from the unconfined aquifer (F− concentration up to 13.30 mg/L) and approximately 66% from confined aquifer (with a maximum F− concentration of 3.90 mg/L) exhibit F− concentrations higher than the Chinese safe drinking limit (1.0 mg/L). High-F− groundwater presents a distinctive hydrochemical characteristic: a high pH value and HCO3− concentration with Ca-poor and Na-rich. Mineral dissolution (e.g., feldspar, calcite, dolomite, fluorite), cation exchange and evaporation in the aquifers predominate the formation of groundwater chemistry, which are also important for F− enrichment in groundwater. Mixing with unconfined groundwater is a significant mechanism resulting in the occurrence of high-F− groundwater in confined aquifer. These findings indicate that physicochemical processes play crucial roles in driving F− enrichment and that may be useful for studying F− occurrence in groundwater in arid and semi-arid areas.
Показать больше [+] Меньше [-]Removal characteristics of a composite active medium for remediation of nitrogen-contaminated groundwater and metagenomic analysis of degrading bacteria
2019
Li, Shuo | Zhang, Yuling | Qian, Hong | Deng, Zhiqun | Wang, Xi | Yin, Siqi
To investigate the removal characteristics of ammonium-nitrogen (NH₄⁺-N), nitrite-nitrogen (NO₂⁻-N), nitrate-nitrogen (NO₃⁻-N), and total nitrogen from groundwater by a degradable composite active medium, kinetics, thermodynamics, and equilibrium adsorption, experiments were performed using scoria and degrading bacteria immobilized on scoria. Removal of NH₄⁺-N, NO₂⁻-N, and NO₃⁻-N was conducted in adsorption experiments using different times, initial concentrations, pH values, and groundwater chemical compositions (Ca²⁺, Mg²⁺, HCO₃⁻, CO₃²⁻, Fe²⁺, Mn²⁺, and SO₄²⁻). The results showed that the removal of nitrogen by the composite active medium was obviously better than that of scoria alone. The removal rates of NH₄⁺-N (C₀ = 5 mg/L), NO₂⁻-N (C₀ = 5 mg/L), and NO₃⁻-N (C₀ = 100 mg/L) by the composite active medium within 1 h were 96.05%, 82.40%, and 83.16%, respectively. The adsorption kinetics were well fitted to a pseudo-second order model, whereas the equilibrium adsorption agreed with the Freundlich model. With changes in the pH, variation in the removal could be attributed to the combined effect of hydrolysis and competitive ion adsorption, and the optimum pH was 7. Different concentration conditions, hardness, alkalinity, anions, and cations showed different promoting and inhibiting effects on the removal of nitrogen. A careful examination of ionic concentrations in adsorption batch experiments suggested that the sorption behavior of nitrogen onto the immobilized medium was mainly controlled by ion exchange. The degrading bacteria on the scoria surface were eluted and analyzed by metagenomic sequencing. There were significant differences in the number of operational taxons, relative abundances, and community diversity among degrading bacteria after adsorption of the three forms of nitrogen. The relative abundance of degrading bacteria was highest after NO₃⁻-N removal, and the diversity was highest after NO₂⁻-N removal. Pseudomonas and Serratia were the dominant genera that could efficiently remove NH₄⁺-N and NO₂⁻-N.
Показать больше [+] Меньше [-]Hydrogeochemical controls on arsenic mobility in an arid inland basin, Southeast of Iran: The role of alkaline conditions and salt water intrusion
2019
Dehbandi, Reza | Abbasnejad, Ahmad | Karimi, Zohreh | Herath, Indika | Bundschuh, Jochen
Elevated inorganic arsenic concentrations in groundwater has become a major public and environmental health concern in different parts of the world. Currently, As-contaminated groundwater issue in many countries and regions is a major topic for publications at global level. However, there are many regions worldwide where the problem has still not been resolved or fully understood due to inadequate hydrogeochemical investigations. Hence, this study evaluates for the first time the hydrogeochemical behavior of the arid and previously unexplored inland basin of Sirjan Plain, south east (SE) Iran, in order to assess the controlling factors which influence arsenic (As) mobility and its distribution through groundwater resources. Total inorganic arsenic concentration was measured using inductive-coupled plasma optical emission spectrometry (ICP-OES). Arsenic content in groundwater of this region ranged between 2.4 and 545.8 μg/L (mean value: 86.6 μg/L) and 50% of the samples exceeded the World Health Organization (WHO) guideline value of 10 μg/L in drinking water. Groundwater was mainly of Na-Cl type and alkaline due to silicate weathering, ion exchange and evaporation in arid conditions. Elevated As concentrations were generally observed under weakly alkaline to alkaline conditions (pH > 7.4). Multivariate statistical analysis including cluster analysis and bi-plot grouped As with pH and HCO3 and demonstrated that the secondary minerals including oxyhydroxides of Fe are the main source of As in groundwater in this region. The desorption of As from these mineral phases occurs under alkaline conditions in oxidizing arid environments thereby leading to high levels of As in groundwater. Moreover, evaporation, ion exchange and saltwater intrusion were the secondary processes accelerating As release and its mobility in groundwater. Based on the results of this study, desorption of As from metal oxy-hydroxides surfaces under alkaline conditions, evaporation and intrusion of As-rich saline water are considered to be the major factors causing As enrichment in arid inland basins such as those in southeast Iran. This study proposes the regular monitoring and proper groundwater management practices to mitigate high levels of arsenic in groundwater and related drinking water wells of Sirjan Plain.
Показать больше [+] Меньше [-]Mechanism of matrix-bound phosphine production in response to atmospheric elevated CO2 in paddy soils
2018
An, Shaorong | Niu, Xiaojun | Chen, Weiyi | Sheng, Hong | Lai, Senchao | Yang, Zhiquan | Gu, Xiaohong | Zhou, Shaoqi
To explore the effect of elevated CO₂ concentrations ([CO₂]) on phosphine formation in paddy fields, the matrix-bound phosphine (MBP) content, different phosphorus fractions and various carbon forms in soil samples from rice cultivation under varying CO₂ concentrations of 400 ppm, 550 ppm and 700 ppm by indoor simulation experiment were determined. This study showed that MBP concentration did not increase significantly with elevated [CO₂] over four-week cultivation periods of rice seedlings, regardless of soil layers. MBP had a significant positive correlation with total phosphorus (TP) and inorganic phosphorus (IP), and multiple stepwise linear regression analysis further indicated that MBP preservation in neutral paddy soils with depths of 0–20 cm may have been due to conversion from FeP and CaP. Based on redundancy analysis and forward selection analysis, speculated that the formation of MBP in the neutral paddy soils as the response to atmospheric elevated [CO₂] was due to two processes: (i) FeP transformation affected by the changes of soil respiration (SCO₂) and TOC was the main precursor for the production of MBP; and (ii) CaP transformation resulting from variation in HCO₃⁻ was the secondary MBP source. The complex combination of these two processes is simultaneously controlled by SCO₂. In a word, the soil environment in the condition of elevated [CO₂] was in favor of MBP storage in neutral paddy soils. The results of our study imply that atmospheric CO₂ participates in and has a certain impact on the global biogeochemical cycle of phosphorus.
Показать больше [+] Меньше [-]Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-doped graphene and aminated graphene
2016
Chen, Hao | Carroll, Kenneth C.
We evaluated three types of functionalized, graphene-based materials for activating persulfate (PS) and removing (i.e., sorption and oxidation) sulfamethoxazole (SMX) as a model emerging contaminant. Although advanced oxidative water treatment requires PS activation, activation requires energy or chemical inputs, and toxic substances are contained in many catalysts. Graphene-based materials were examined herein as an alternative to metal-based catalysts. Results show that nitrogen-doped graphene (N-GP) and aminated graphene (NH2-GP) can effectively activate PS. Overall, PS activation by graphene oxide was not observed in this study. N-GP (50 mg L−1) can rapidly activate PS (1 mM) to remove >99.9% SMX within 3 h, and NH2-GP (50 mg L−1) activated PS (1 mM) can also remove 50% SMX within 10 h. SMX sorption and total removal was greater for N-GP, which suggests oxidation was enhanced by increasing proximity to PS activation sites. Increasing pH enhanced the N-GP catalytic ability, and >99.9% SMX removal time decreased from 3 h to 1 h when pH increased from 3 to 9. However, the PS catalytic ability was inhibited at pH 9 for NH2-GP. Increases in ionic strength (100 mM NaCl or Na2SO4) and addition of radical scavengers (500 mM ethanol) both had negligible impacts on SMX removal. With bicarbonate addition (100 mM), while the catalytic ability of N-GP remained unaltered, NH2-GP catalytic ability was inhibited completely. Humic acid (250 mg L−1) was partially effective in inhibiting SMX removal in both N-GP and NH2-GP systems. These results have implications for elucidating oxidant catalysis mechanisms, and they quantify the ability of functionalization of graphene with hetero-atom doping to effectively catalyze PS for water treatment of organic pollutants including emerging contaminants.
Показать больше [+] Меньше [-]A column evaluation of Appalachian coal mine spoils' temporal leaching behavior
2015
Orndorff, Zenah W. | Daniels, W Lee | Zipper, Carl E. | Eick, Matt | Beck, Mike
Appalachian surface coal mine overburden affects water quality as drainage percolates through spoil disposal fills. This study evaluated leaching potentials of 15 spoils from south-central Appalachia. Most bulk samples were non acid-forming, all were low in total-S, (≤0.34%), and initial saturated paste specific conductance (SC) ranged from 264 to 3560 μS cm−1. Samples were leached unsaturated (40 cycles) and leachates analyzed for pH, SC, and ion composition. Overall, leachates from unweathered spoils were higher in pH and SC than leachates from weathered spoils. Fine-textured spoils generally produced higher SCs than more coarsely textured spoils. Mean SC for all spoils decreased rapidly from an initial peak of 1468 μS cm−1 (±150) to 247 μS cm−1 (±23). Release patterns for most major ions reflected declining SC. Bicarbonate typically increased with successive leaches, replacing sulfate as the dominant anion. Column SC values were comparable to relevant published field data.
Показать больше [+] Меньше [-]Human health risk assessment of some bottled waters from Romania
2020
Dippong, Thomas | Hoaghia, Maria-Alexandra | Mihali, Cristina | Cical, Elena | Calugaru, Mihai
The paper presents the quality status of 14 brands of bottled water, with sources of groundwaters from different mountain areas alongside the Carpathian Mountains from Romania. A number of 12 physico-chemical parameters (ammonium, bicarbonate, electrical conductivity, carbonate, chemical oxygen demand, chloride, nitrate, nitrite, pH, sulphate, total hardness, turbidity), 9 metals and metalloids (Li, B, Na, Mg, Al, K, Ca, Sr, Ba) and 17 heavy metals (V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Mo, Ag, Cd, In, Tl, Pb, Bi) were determined and studied. The quality status, the potential contamination and the health risk assessment of bottled waters were assessed, by using the drinking water quality index, the heavy metal pollution index, the heavy metal evaluation index, the degree of contamination and the human health risk indices. Hierarchical cluster analysis was applied, indicating similarities among the studied bottled waters based on their metal content. The Piper diagram reveals that the majority of bottled water samples fall into the Ca, Mg, Na, K, Cl⁻, SO₄²⁻, CO₃²⁻, HCO₃⁻ categories. The quality of bottled waters based on the indices results indicated marginal, poor and very-poor quality status of the studied water samples, while the health risk assessment indices presented potential risks at aluminium, chloride and nitrate for the inhabitants who used those water samples with the purpose of drinking. The pollution indices with respect to metals generally reflected a low pollution status. This study represents the first attempt in assessing the overall quality of some bottled water collected from the mountain area, Romania, likewise assessing the comprehensive human health risk due to several chemical elements determined in water in amounts around and exceeding the maximum allowable concentrations. This research can be useful for development of potential strategies for risk control and management in the field of drinking water.
Показать больше [+] Меньше [-]Identification of hydrochemical genesis and screening of typical groundwater pollutants impacting human health: A case study in Northeast China
2019
Zhai, Yuanzheng | Zheng, Fuxin | Zhao, Xiaobing | Xia, Xuelian | Teng, Yanguo
Concentrations of common pollutants in groundwater continue to increase, and emerging pollutants are also increasingly found worldwide, thereby increasingly impacting human activities. In this new situation, it is necessary, albeit more difficult, to once again recognize the hydrochemical genesis of groundwater and to subsequently screen the typical pollutants. Taking the groundwater of the Songnen Plain of Northeast China as an example, the hydrochemical genesis was identified using space interpolation, characteristic element ratio and factor analysis methods based on 368 groundwater samples. Subsequently, the typical pollutants with potential impacts on the health of the local residents were screened by the index system method newly established. All the measured hydrochemical compositions show an obvious spatial variation, with a uniform hydrochemical type of HCO3–Ca in the whole area. Both the major compositions (K, Na, Ca, Mg, HCO3, Cl and SO4) and trace compositions (Fe, Mn, Cu, Zn, Pb, As, F, I and Se) are mainly protogenetic in an environment impacted by the lixiviation of groundwater in the migration process in the strata, although these compositions have been impacted by human activities to varying degrees. The mass concentration of NO3–N has exceeded most of the major compositions except for HCO3 and Ca, which means the nitrogen pollution problem is already very serious; and this problem is mainly caused by the utilization of fertilizers and the discharge of industrial wastewater and domestic sewage. Human activities have obviously disrupted the natural dynamic balance of these chemicals between the environment and the groundwater, thereby intensifying the release of F, Fe and Mn from the environment. TDS, total hardness, tri-nitrogen, F, Fe, Mn, Pb and As in some parts are found to exceed the standards of groundwater quality to varying degrees. As, Pb, Fe, NO3–N, NO2–N, Mn, F and NH4–N are finally screened as the typical pollutants.
Показать больше [+] Меньше [-]Micromorphology and environmental behavior of oxide deposit layers in sulfide-rich tailings in Tongling, Anhui Province, China
2019
Zheng, Liugen | Qiu, Zheng | Tang, Quan | Li, Yang
Sulfide-rich tailings produced by mineral processing are prone to oxidation and cause many pollution problems in the surrounding environment; therefore, this issue has become a focus of attention. The Tongling Shuimuchong tailings reservoir contains a large amount of sulfide minerals, especially pyrrhotite and pyrite. This reservoir features obvious oxidation in the surface layer, and the slab is very hard. Mineralogical and environmental geochemical analyses were performed on tailings with different degrees of oxidation in the Shuimuchong tailings reservoir to investigate the influence of the formation of the hard oxidized layer on environmental pollution in the tailings pond. The samples were first subjected to particle-size analysis. The shallow tailings were mainly composed of medium particle; the proportions of coarse particle and fine tailings particles were equal; and the proportions of clay and silt were less than those of the other size fractions. Mineralogical analysis showed that pyrrhotite and pyrite were replaced by residual structures in the oxide layer. The secondary minerals goethite, hematite and jarosite were attached to the edges and fractures of sulfide minerals. The samples were geochemically analyzed to determine the total concentrations of 5 elements, the pH and the major anions. The maximum SO₄²⁻ concentrations of 33,970 and 32,749 mg/kg were observed at a depth of 40 cm in profiles 1 and 2, respectively. Metal sulfide mineral oxidation in the tailings lowered the pH of the materials to values less than 4. The concentration of HCO₃⁻ (122–635 mg/kg) in the tailings samples was very low, and the concentration of CO₃²⁻ was zero. As (53.2–133.7 mg/kg), Pb (24.2–307.5 mg/kg) and Hg (0.03–0.06 mg/kg) were concentrated in the highly oxidized layer at the surface; the Cd content (0.23–10.5 mg/kg) increased with decreasing oxidation degree of the tailings; and the Cr content (38.0–54.9 mg/kg) fluctuated around a certain value.
Показать больше [+] Меньше [-]