Уточнить поиск
Результаты 1-10 из 25
A cold front induced co-occurrence of O3 and PM2.5 pollution in a Pearl River Delta city: Temporal variation, vertical structure, and mechanism
2022
He, Yuanping | Li, Lei | Wang, Haolin | Xu, Xinqi | Li, Yuman | Fan, Shaojia
In this study, the spatiotemporal variabilities and characteristics of ozone (O₃) and fine particulate matter (PM₂.₅) were reconstructed, and the interaction between meteorological conditions and the co-occurrence of O₃ and PM₂.₅ in Zhuhai, a city in the Pearl River Delta (China), was analysed. The vertical distributions of lower tropospheric O₃, aerosol extinction coefficient, and wind velocity were measured using a ground-based LiDAR system. The diurnal variations in air pollutant concentrations and meteorological conditions at ground level were examined from 28 November to December 8, 2020 considering the weather conditions in Zhuhai. Heavy pollution episodes with increased concentrations of O₃ and PM₂.₅ were observed from 6 to 7 December after a period of cold air invasion. The maximum hourly average concentrations of O₃ and PM₂.₅ at the ground level reached up to 190 μg/m³, 98 μg/m³, respectively. The horizontal wind speed rapidly decreased to less than 2 m/s during the heavy pollution episodes driven by O₃ and PM₂.₅, whereas the vertical wind velocity was dominated by the downdraught. When the large-scale synoptic winds were weak, a strengthening sea breeze in the afternoon could promote the landward propagation of warm marine air masses, and a lower surface wind speed was driven by the convergence of cold air from the north and warm air from the south. In turn, this increased the residence time of air pollutants and promoted their conversion to secondary pollutants. Regarding the pollution sources, the results indicated that the Pearl River Estuary represented a ‘pool’ of O₃ and PM₂.₅ pollution. In addition, the contribution of regional pollutant transport could not be ignored when considering the accumulative increase in air pollution. Overall, the relatively weak synoptic winds, low mixing height, and high generation of pollution around Zhuhai collectively resulted in high concentrations of O₃ and PM₂.₅.
Показать больше [+] Меньше [-]Vertical profile of aerosols in the Himalayas revealed by lidar: New insights into their seasonal/diurnal patterns, sources, and transport
2021
Xiang, Yan | Zhang, Tianshu | Liu, Jianguo | Wan, Xin | Loewen, Mark | Chen, Xintong | Kang, Shichang | Fu, Yibin | Lv, Lihui | Liu, Wenqing | Cong, Zhiyuan
Atmospheric aerosols play a crucial role in climate change, especially in the Himalayas and Tibetan Plateau. Here, we present the seasonal and diurnal characteristics of aerosol vertical profiles measured using a Mie lidar, along with surface black carbon (BC) measurements, at Mt. Qomolangma (QOMS), in the central Himalayas, in 2018–2019. Lidar-retrieved profiles of aerosols showed a distinct seasonal pattern of aerosol loading (aerosol extinction coefficient, AEC), with a maximum in the pre-monsoon (19.8 ± 22.7 Mm⁻¹ of AEC) and minimum in the summer monsoon (7.0 ± 11.2 Mm⁻¹ of AEC) seasons. The diurnal variation characteristics of AEC and BC were quite different in the non-monsoon seasons with enriched aerosols being maintained from 00:00 to 10:00 in the pre-monsoon season. The major aerosol types at QOMS were identified as background, pollution, and dust aerosols, especially during the pre-monsoon season. The occurrence of pollution events influenced the vertical distribution, seasonal/diurnal patterns, and types of aerosols. Source contribution of BC based on the weather research and forecasting chemical model showed that approximately 64.2% ± 17.0% of BC at the QOMS originated from India and Nepal in South Asia during the non-monsoon seasons, whereas approximately 47.7% was from local emission sources in monsoon season. In particular, the high abundance of BC at the QOMS in the pre-monsoon season was attributed to biomass burning, whereas anthropogenic emissions were the likely sources during the other seasons. The maximum aerosol concentration appeared in the near-surface layer (approximately 4.3 km ASL), and high concentrations of transported aerosols were mainly found at 4.98, 4.58, 4.74, and 4.88 km ASL in the pre-monsoon, monsoon, post-monsoon, and winter seasons, respectively. The investigation of the vertical profiles of aerosols at the QOMS can help verify the representation of aerosols in the air quality model and satellite products and regulate the anthropogenic disturbance over the Tibetan Plateau.
Показать больше [+] Меньше [-]Influence of a weak typhoon on the vertical distribution of air pollution in Hong Kong: A perspective from a Doppler LiDAR network
2021
Huang, Tao | Yang, Yuanjian | O’Connor, Ewan James | Lolli, Simone | Haywood, Jim | Osborne, M. (Martin) | Cheng, Jack Chin-Ho | Guo, Jianping | Yim, Steve Hung-Lam
High particulate matter (PM) and ozone (O₃) concentration in Hong Kong are frequently observed during the summertime typhoon season. Despite the critical effect of a typhoon on air pollution, contributions of vertical wind profile and cloud movement during transboundary air pollution (TAP) on surface PM and O₃ concentration have yet to be fully understood. This work is the first study to apply a network of Doppler light detection and ranging (LiDAR) as well as back trajectory analysis to comprehensively analyze the effect of a weak Typhoon (Danas) occurring during 16–19 July 2019 on different variations in PM and O₃ concentration. During the typhoon Danas, three types of surface air pollution with five episodes were identified: (1) low PM and high O₃ concentration; (2) co-occurring high PM and O₃ concentration and (3) high PM and low O₃ concentration. Employing our 3D Real-Time Atmospheric Monitoring System (3DREAMs) along with surface observations, we found the important role of TAP in the increases in surface PM and O₃ concentration with significant vertical wind shear that transported air pollutants at upper levels, and strong vertical mixing that brought air pollutants to the ground level. Cloud movement related to typhoon periphery, as well as high solar radiation due to sinking motion and remote transport by continental wind, have an impact on local O₃ concentration. For the substantial difference in O₃ concentration between two air quality measurement sites, the similar vertical aerosol distributions and wind profiles suggest the comparable TAP contributions at the two sites and thus infer the critical role of local O₃ photochemical process in the O₃ difference. This work comprehensively reveals the influences of a weak typhoon on variations in PM and O₃ during the five episodes, providing important references for air quality monitoring and forecast in regions under the influence of typhoon.
Показать больше [+] Меньше [-]Haze episodes before and during the COVID-19 shutdown in Tianjin, China: Contribution of fireworks and residential burning
2021
Dai, Qili | Ding, Jing | Hou, Linlu | Li, Linxuan | Cai, Ziying | Liu, Baoshuang | Song, Congbo | Bi, Xiaohui | Wu, Jianhui | Zhang, Yufen | Feng, Yinchang | Hopke, Philip K.
Potential health benefits from improved ambient air quality during the COVID-19 shutdown have been recently reported and discussed. Despite the shutdown measures being in place, northern China still suffered severe haze episodes (HE) that are not yet fully understood, particularly how the source emissions changed. Thus, the meteorological conditions and source emissions in processing five HEs occurred in Beijing-Tianjin-Hebei area were investigated by analyzing a comprehensive real-time measurement dataset including air quality data, particle physics, optical properties, chemistry, aerosol lidar remote sensing, and meteorology. Three HEs recorded before the shutdown began were related to accumulated primary pollutants and secondary aerosol formation under unfavorable dispersion conditions. The common “business as usual” emissions from local primary sources in this highly polluted area exceeded the wintertime atmospheric diffusive capacity to disperse them. Thus, an intensive haze formed under these adverse meteorological conditions such as in the first HE, with coal combustion to be the predominant source. Positive responses to the shutdown measures were demonstrated by reduced contributions from traffic and dust during the final two HEs that overlapped the Spring and Lantern Festivals, respectively. Local meteorological dispersion during the Spring Festival was the poorest among the five HEs. Increased residential burning plus fireworks emissions contributed to the elevated PM₂.₅ with the potential of enhancing the HEs. Our results highlight that reductions from shutdown measures alone do not prevent the occurrence of HEs. To further reduce air pollution and thus improve public health, abatement strategies with an emphasis on residential burning are needed.
Показать больше [+] Меньше [-]Vertical distribution of smoke aerosols over upper Indo-Gangetic Plain
2020
Attenuated backscatter profiles retrieved by the space borne active lidar CALIOP on-board CALIPSO satellite were used to measure the vertical distribution of smoke aerosols and to compare it against the ECMWF planetary boundary layer height (PBLH) over the smoke dominated region of Indo-Gangetic Plain (IGP), South Asia. Initially, the relative abundance of smoke aerosols was investigated considering multiple satellite retrieved aerosol optical properties. Only the upper IGP was selectively considered for CALIPSO retrieval based on prevalence of smoke aerosols. Smoke extinction was found to contribute 2–50% of the total aerosol extinction, with strong seasonal and altitudinal attributes. During winter (DJF), smoke aerosols contribute almost 50% of total aerosol extinction only near to the surface while in post-monsoon (ON) and monsoon (JJAS), relative contribution of smoke aerosols to total extinction was highest at about 8 km height. There was strong diurnal variation in smoke extinction, evident throughout the year, with frequent abundance of smoke particles at lower height (<4 km) during daytime compared to higher height during night (>4 km). Smoke injection height also varied considerably during rice (ON: 0.71 ± 0.65 km) and wheat (AM: 2.34 ± 1.34 km) residue burning period having a significant positive correlation with prevailing PBLH. Partitioning smoke AOD against PBLH into the free troposphere (FT) and boundary layer (BL) yield interesting results. BL contribute 36% (16%) of smoke AOD during daytime (nighttime) and the BL-FT distinction increased particularly at night. There was evidence that despite travelling efficiently to FT, major proportion of smoke AOD (50–80%) continue to remain close to the surface (<3 km) thereby, may have greater implications on regional climate, air quality, smoke transport and AOD-particulate modelling.
Показать больше [+] Меньше [-]Observational study of aerosol-induced impact on planetary boundary layer based on lidar and sunphotometer in Beijing
2019
Wang, Haofei | Li, Zhengqiang | Lv, Yang | Xu, Hua | Li, Kaitao | Li, Donghui | Hou, Weizhen | Zheng, Fengxun | Wei, Yuanyuan | Ge, Bangyu
Atmospheric aerosols have been found to influence the development of planetary boundary layer (PBL) and hence to aggravate haze pollution in megacities. PBL height (PBLH) determines the vertical extent to which the most pollutant effectively disperses and is a key argument in pollution study. In this study, we quantitatively evaluate aerosol radiation effect on PBL, as well as assessment of surface cooling effect and atmosphere heating effect. All the data are measured at a site of Beijing from 2014 to 2017, of which PBLH is retrieved from micro pulse lidar and aerosol optical depth (AOD) from sunphotometer. Case study shows qualitatively that relative high aerosol load reduces PBLH, and in turn causes a high surface PM₂.₅ concentration. We preliminarily reveal the influential mechanism of aerosol on PBL. The influence of aerosol on the radiation flux of PBL is analyzed, with the correlation coefficient (R) of 0.938 between AOD and radiative forcing of BOA (RFBOA) and R = 0.43 between RFBOA and PBLH. Also, AOD is found to negatively correlate with PBLH (R = −0.41). With the increase of AOD, the cooling effect of surface is enhanced, and further impede the development of PBL. Due to aerosol-induced reduction of PBLH, near surface PM₂.₅ concentration surges and presents an exponential growth following AOD. Then, it is speculated and testified that the relationship between SSA (single scatting albedo) and PBLH would be determined by the location of absorbing aerosol within PBL. The upper PBL absorbing aerosol may decrease PBLH, while the lower absorbing aerosol appear to enhance PBLH. The study probably can provide effective observational evidence for understanding the effect of aerosol on PBL and be a reference of air pollution mitigation in Beijing and its surrounding areas.
Показать больше [+] Меньше [-]Lidar mapping of atmospheric atomic mercury in the Wanshan area, China
2018
Lian, Ming | Shang, Lihai | Duan, Zheng | Li, Yiyun | Zhao, Guangyu | Zhu, Shiming | Qiu, Guangle | Meng, Bo | Sommar, Jonas | Feng, Xinbin | Svanberg, S. (Sune)
A novel mobile laser radar system was used for mapping gaseous atomic mercury (Hg0) atmospheric pollution in the Wanshan district, south of Tongren City, Guizhou Province, China. This area is heavily impacted by legacy mercury from now abandoned mining activities. Differential absorption lidar measurements were supplemented by localized point monitoring using a Lumex RA-915M Zeeman modulation mercury analyzer. Range-resolved concentration measurements in different directions were performed. Concentrations in the lower atmospheric layers often exceeded levels of 100 ng/m3 for March conditions with temperature ranging from 5 °C to 20 °C. A flux measurement of Hg0 over a vertical cross section of 0.12 km2 resulted in about 29 g/h. Vertical lidar sounding at night revealed quickly falling Hg0 concentrations with height. This is the first lidar mapping demonstration in a heavily mercury-polluted area in China, illustrating the lidar potential in complementing point monitors.
Показать больше [+] Меньше [-]Urban edge trees: Urban form and meteorology drive elemental carbon deposition to canopies and soils
2022
Ponette-González, Alexandra G. | Chen, Dongmei | Elderbrock, Evan | Rindy, Jenna E. | Barrett, Tate E. | Luce, Brett W. | Lee, Jun-Hak | Ko, Yekang | Weathers, Kathleen C.
Urban tree canopies are a significant sink for atmospheric elemental carbon (EC)––an air pollutant that is a powerful climate-forcing agent and threat to human health. Understanding what controls EC deposition to urban trees is therefore important for evaluating the potential role of vegetation in air pollution mitigation strategies. We estimated wet, dry, and throughfall EC deposition for oak trees at 53 sites in Denton, TX. Spatial data and airborne discrete-return LiDAR were used to compute predictors of EC deposition, including urban form characteristics, and meteorologic and topographic factors. Dry and throughfall EC deposition varied 14-fold across this urban ecosystem and exhibited significant variability from spring to fall. Generalized additive modeling and multiple linear regression analyses showed that urban form strongly influenced tree-scale variability in dry EC deposition: traffic count as well as road length and building height within 100–150 m of trees were positively related to leaf-scale dry deposition. Rainfall amount and extreme wind-driven rain from the direction of major pollution sources were significant drivers of throughfall EC. Our findings indicate that complex configurations of roads, buildings, and vegetation produce “urban edge trees” that contribute to heterogeneous EC deposition patterns across urban systems, with implications for greenspace planning.
Показать больше [+] Меньше [-]Transport and boundary layer interaction contribution to extremely high surface ozone levels in eastern China
2021
Li, Xiao-Bing | Fan, Guangqiang | Lou, Shengrong | Yuan, Bin | Wang, Xuemei | Shao, Min
Vertical measurements of ozone (O₃) within the 3000-m lower troposphere were obtained using an O₃ lidar to investigate the contribution of the interactions between the transport and boundary layer processes to the surface O₃ levels in urban Shanghai, China during July 23–28, 2017. An extremely severe pollution episode with a maximum hourly O₃ mixing ratio of 160.4 ppb was observed. In addition to enhanced local photochemical production, both downward and advection transport in the lower troposphere may have played important roles in forming the pollution episode. The O₃-rich air masses in the lower free troposphere primarily originated from central China and the northern Yangtze River Delta (YRD) region. The downward transport of O₃ from the lower free troposphere may have an average contribution of up to 49.1% to the daytime (09:00–16:00 local time) surface O₃ in urban Shanghai during the pollution episode (July 23–26, 2017). As for the advection transport, large amounts of O₃ were transported outward from Shanghai in the planetary boundary layer under the influence of southeasterly winds during the field study. In this condition, the boundary-layer O₃ that was transported downward from the free troposphere in Shanghai could be transported back to the northern YRD region and accumulated therein, leading to the occurrence of severe O₃ pollution events over the whole YRD region. Our results indicate that effective regional emission control measures are urgently required to mitigate O₃ pollution in the YRD region.
Показать больше [+] Меньше [-]Impact of coal-carrying trains on particulate matter concentrations in South Delta, British Columbia, Canada
2017
Akaoka, K. | McKendry, I. | Saxton, J. | Cottle, P.W.
Transport of coal by train through residential neighborhoods in Metro Vancouver, British Columbia, Canada may increase the possibility of exposure to particulate matter at different size ranges, with concomitant potential negative health impacts. This pilot study identifies and quantifies train impacts on particulate matter (PM) concentrations at a single location. Field work was conducted during August and September 2014, with the attributes of a subset of passing trains confirmed visually, and the majority of passages identified with audio data. In addition to fixed ground based monitors at distances 15 and 50 m from the train tracks, an horizontally pointing mini-micropulse lidar system was deployed on three days to make backscatter and depolarization measurements in an attempt to identify the zone of influence, and sources, of train-generated PM. Ancillary wind and dust fall data were also utilized. Trains carrying coal are associated with a 5.3 (54%), 4.1 (33%), and 2.6 (17%) μgm−3 average increase in concentration over a 14 min period compared to the average concentrations over the 10 min prior to and after a train passage (“control” or “background” conditions), for PM3, PM10, and PM20, respectively. In addition, for PM10 and PM20, concentrations during train passages of non-coal-carrying trains were not found to be significantly different from PM concentrations during control conditions. Presence of coal dust particles at the site was confirmed by dust fall measurements. Although enhancements of PM concentrations during 14 min train passages were generally modest, passing coal trains occasionally enhanced concentrations at 50 m from the tracks by ∼100 μgm-3. Results showed that not every train passage increased PM concentrations, and the effect appears to be highly dependent on wind direction, local meteorology and load related factors. LiDAR imagery suggests that re-mobilization of track-side PM by train-induced turbulence may be a significant contributor to coarse particle enhancements.
Показать больше [+] Меньше [-]