Уточнить поиск
Результаты 1-10 из 5,858
COVID-19 Waste as Source of Microplastics in the Environment: Implication for Aquatic Species, Human, and Remediation Measures- A Review
2023
Iheanacho, Stanley | Ogbu, Miracle | Ekpeyoung, Joshua | Tabi, Elizabeth | Iheanacho, Angus | Bhuyan, Md Simul | Ogunji, Johnny
Coronavirus (COVID-19) pandemic ushered in a new era that led to the adjustments of diverse ecosystems. The pandemic restructured the global socio-economic events which prompted several adaptation measures as a response mechanism to cushion the negative impact of the disease pandemic. Critical health safety actions were imperative to curtail the spread of the disease such as wearing personal protective equipment (PPEs), masks, goggles, and using sanitizers for disinfection purposes. The daily demands for the products by individuals and medical personnel heightened their production and consumption, leading to a corresponding increase of COVID-19 wastes in the environment following indiscriminate waste disposal and poor waste management. The persistent occurrence of COVID-19 wastes aggravated microplastics (MPs) contamination in the aquatic ecosystem following the breakdown of PPEs-based plastics via oxidation, fragmentation, and photo-degradation actions. These MPs are transported in the aquatic environment via surface runoff and wind action, apart from discrete sources. MPs' presence in the aquatic systems is not without repercussions. Ingestion of MPs by aquatic organisms can cause several diseases (e.g., poor growth, oxidative distress, neurotoxicity, developmental toxicity, reproductive toxicity, immunotoxicity, and organ toxicity). Humans are at high risk of MPs uptake. Apart from aerial and soil contamination sources, consumption of aquatic food products is a critical pathway of MPs into the human body. MP toxicities in humans include liver disorder, respiratory failure, infertility, hormonal imbalance, diarrhea, developmental disorder, and mortality. Measures to alleviate the effect of COVID-19 waste litters include effective waste management plans and the adoption of technologies to extract cum degrade MPs from the aquatic and terrestrial environment.
Показать больше [+] Меньше [-]Anthropogenic share of metal contents in soils of urban areas
2018
Fazeli, G. | Karbassi, A.R. | khoramnejadian, Sh. | Nasrabadi, T.
In the present investigation, 41 soil samples were subjected to single step chemical partitioning to assess the lithogenic and non-lithogenic portions of metals in Tehran's soils. The share of various studied metals in the anthropogenic portion ranges from as low as 0.2% to as high as 85% of bulk concentration. Geo-accumulation index (Igeo) showed that Cd falls within "heavily contaminated" soils. It might be inferred that Ni, Cu, Cr, Zn, Co and Ca fall within "Deficient to minimal" class in accordance with enrichment factor (EF) classification.. Enrichment factor values (to some extents) match with the chemical partition studies results (except for Ni and Cr). The very low Ca content of soil samples could be indicative of low biological productivity in the Tehran's soil. Also the very low concentrations of Mn could be indicative of reducing environment in soils of Tehran.
Показать больше [+] Меньше [-]A review on occurrence of emerging pollutants in waters of the MENA region
2021
Haddaoui, I. | Mateo-Sagasta, Javier
Little is known about the occurrence of emerging pollutants (EPs) in waters in the Middle East and North Africa (MENA) region despite the extensive use of low-quality water there. Available data dealing with the sources, occurrence and removal of EPs within the MENA region in different categories of water is collected, presented and analyzed in this literature review. According to the collected database, the occurrence and removal efficiency of EPs in the water matrix in the MENA region is available, respectively, for 13 and six countries of the 18 in total; no available data is registered for the rest. Altogether, 290 EPs have been observed in different water matrices across the MENA countries, stemming mainly from industrial effluents, agricultural practices, and discharge or reuse of treated wastewater (TWW). Pharmaceutical compounds figure among the most frequently reported compounds in wastewater, TWW, surface water, and drinking water. Nevertheless, pesticides are the most frequently detected pollutants in groundwater. Worryingly, 57 cases of EPs have been reported in different fresh and drinking waters, exceeding World Health Organization (WHO) and European Commission (EC) thresholds. Overall, pharmaceuticals, organic compounds, and pesticides are the most concerning EP groups. The review revealed the ineffectiveness of treatment processes used in the region to remove EPs. Negative removals of some EPs such as carbamazepine, erythromycin, and sulfamethoxazole were recorded, suggesting their possible accumulation or release during treatment. This underlines the need to set in place and strengthen control measures, treatment procedures, standards, and policies for such pollutants in the region.
Показать больше [+] Меньше [-]A review on occurrence of emerging pollutants in waters of the MENA region
2021
Haddaoui, I. | Mateo-Sagasta, Javier
Radon potential mapping in Jangsu-gun, South Korea using probabilistic and deep learning algorithms
2022
Rezaie, Fatemeh | Panahi, Mahdi | Lee, Jongchun | Lee, Jungsub | Kim, Seonhong | Yoo, Juhee | Lee, Saro
The adverse health effects associated with the inhalation and ingestion of naturally occurring radon gas produced during the uranium decay chain mean that there is a need to identify high-risk areas. This study detected radon-prone areas using a geographic information system (GIS)-based probabilistic and machine learning methods, including the frequency ratio (FR) model and a convolutional neural network (CNN). Ten influencing factors, namely elevation, slope, the topographic wetness index (TWI), valley depth, fault density, lithology, and the average soil copper (Cu), calcium oxide (Cao), ferric oxide (Fe₂O₃), and lead (Pb) concentrations, were analyzed. In total, 27 rock samples with high activity concentration index values were divided randomly into training and validation datasets (70:30 ratio) to train the models. Areas were categorized as very high, high, moderate, low, and very low radon areas. According to the models, approximately 40% of the study area was classified as very high or high risk. Finally, the radon potential maps were validated using the area under the receiver operating characteristic curve (AUC) analysis. This showed that the CNN algorithm was superior to the FR method; for the former, AUC values of 0.844 and 0.840 were obtained using the training and validation datasets, respectively. However, both algorithms had high predictive power. Slope, lithology, and TWI were the best predictors of radon-affected areas. These results provide new information regarding the spatial distribution of radon, and could inform the development of new residential areas. Radon screening is important to reduce public exposure to high levels of naturally occurring radiation.
Показать больше [+] Меньше [-]Association between fine particulate matter and coronary heart disease: A miRNA microarray analysis
2022
Guo, Jianhui | Xie, Xiaoxu | Wu, Jieyu | Yang, Le | Ruan, Qishuang | Xu, Xingyan | Wei, Donghong | Wen, Yeying | Wang, Tinggui | Hu, Yuduan | Lin, Yawen | Chen, Mingjun | Wu, Jiadong | Lin, Shaowei | Li, Huangyuan | Wu, Siying
Several studies have reported an association between residential surrounding particulate matter with an aerodynamic diameter ≤2.5 μm (PM₂.₅) and coronary heart disease (CHD). However, the underlying biological mechanism remains unclear. To fill this research gap, this study enrolled a residentially stable sample of 942 patients with CHD and 1723 controls. PM₂.₅ concentration was obtained from satellite-based annual global PM₂.₅ estimates for the period 1998–2019. MicroRNA microarray and pathway analysis of target genes was performed to elucidate the potential biological mechanism by which PM₂.₅ increases CHD risk. The results showed that individuals exposed to high PM₂.₅ concentrations had higher risks of CHD than those exposed to low PM₂.₅ concentrations (odds ratio = 1.22, 95% confidence interval: 1.00, 1.47 per 10 μg/m³ increase in PM₂.₅). Systolic blood pressure mediated 6.6% of the association between PM₂.₅ and CHD. PM₂.₅ and miR-4726-5p had an interaction effect on CHD development. Bioinformatic analysis demonstrated that miR-4726-5p may affect the occurrence of CHD by regulating the function of RhoA. Therefore, individuals in areas with high PM₂.₅ exposure and relative miR-4726-5p expression have a higher risk of CHD than their counterparts because of the interaction effect of PM₂.₅ and miR-4726-5p on blood pressure.
Показать больше [+] Меньше [-]Association between urinary propylene oxide metabolite and the risk of dyslexia
2022
Liu, Qi | Wan, Yanjian | Zhu, Bing | Xie, Xinyan | Zhu, Kaiheng | Jiang, Qi | Feng, Yanan | Xiao, Pei | Xiang, Zhen | Wu, Xiaoqian | Zhang, Jiajia | Meng, Heng | Song, Ranran
Although it is a probable human carcinogen, propylene oxide is widely applied in industry and daily life. However, data on neurodevelopmental effects of propylene oxide exposure among children are extremely limited. We aimed to determine the urinary concentrations of propylene oxide metabolite among school-aged children and evaluate the potential association of propylene oxide exposure with risk of dyslexia. A total of 355 dyslexic children and 390 controls were recruited from three cities (Jining, Wuhan, and Hangzhou) in China, between 2017 and 2020. Urinary N-acetyl-S-(2-hydroxypropyl)-L-cysteine (i.e., 2-hydroxypropyl mercapturic acid; 2-HPMA) was measured as the biomarker of propylene oxide exposure. The detection frequency of 2-HPMA was 100%. After adjusting for potential confounders, the odds ratio (OR) for dyslexia per 2-fold increase in urinary 2-HPMA was 1.19 [95% confidence interval (95% CI): 1.01, 1.40, P = 0.042]. Compared with the lowest quartile of urinary 2-HPMA concentrations, children with the highest quartile of 2-HPMA had a 1.63-fold (95% CI: 1.03, 2.56, P = 0.036) significantly increased risk of dyslexia, with a dose-response relationship (P-trend = 0.047). This study provides epidemiological data on the potential association between propylene oxide exposure and the risk of dyslexia in children. Further studies are warranted to confirm the findings and reveal the underlying biological mechanisms.
Показать больше [+] Меньше [-]Integrated assessment of the impact of land use types on soil pollution by potentially toxic elements and the associated ecological and human health risk
2022
Wang, Xueping | Wang, Lingqing | Zhang, Qian | Liang, Tao | Li, Jing | Bruun Hansen, Hans Chr | Shaheen, Sabry M. | Antoniadis, Vasileios | Bolan, Nanthi | Rinklebe, Jörg
The impact of land use type on the content of potentially toxic elements (PTEs) in the soils of the Qinghai-Tibet Plateau (QTP) and the associated ecological and human health risks has drawn great attention. Consequently, in this study, top- and subsurface soil samples were collected from areas with four different land uses (i.e., cropland, forest, grassland, and developed area) and the total contents of Cr, Cd, Cu, Pb and Zn were determined. Geostatistical analysis, self-organizing map (SOM), and positive matrix factorization (PMF), ecological risk assessment (ERA) and human health risk assessment (HRA) were applied and used to classify and identify the contamination sources and assess the potential risk. Partial least squares path modeling (PLS-PM) was applied to clarify the relationship of land use with PTE contents and risk. The PTE contents in all topsoil samples surpassed the respective background concentrations of China and corresponding subsurface concentrations. However, the ecological risk of all soil samples remained at a moderate or considerable level across the four land use types. Developed area and cropland showed a higher ecological risk than the other two land use types. Industrial discharges (32.8%), agricultural inputs (22.6%), natural sources (23.7%), and traffic emissions (20.9%) were the primary PTE sources in the tested soils, which indicate that anthropogenic activities have significantly affected soil PTE contents to a greater extent than other sources. Industrial discharge was the most prominent source of non-carcinogenic health risk, contributing 37.7% for adults and 35.2% for children of the total risk. The results of PLS-PM revealed that land use change associated with intensive human activities such as industrial activities and agricultural practices distinctly affected the PTE contents in soils of the Qinghai-Tibet Plateau.
Показать больше [+] Меньше [-]Differential selenium uptake by periphyton in boreal lake ecosystems
2022
Oldach, Mikayla D. | Graves, Stephanie D. | Janz, David M.
The largest and most variable step of selenium (Se) assimilation into aquatic ecosystems is the rapid uptake of aqueous Se by primary producers. These organisms can transfer more harmful forms of Se to higher trophic levels via dietary pathways, although much uncertainty remains around this step of Se assimilation due to site-specific differences in water chemistry, hydrological and biogeochemical characteristics, and community composition. Thus, predictions of Se accumulation are difficult, and boreal lake systems are relatively understudied. To address these knowledge gaps, five static-renewal field experiments were performed to examine the bioaccumulation of low, environmentally relevant concentrations of Se, as selenite, by naturally grown periphyton from multiple boreal lakes. Periphyton rapidly accumulated Se at low aqueous Se concentrations, with tissue Se concentrations ranging from 8.0 to 24.9 μg/g dry mass (dm) in the 1–2 μg Se/L treatments. Enrichment functions ranged from 2870 to 12 536 L/kg dm in the 4 μg Se/L treatment, to 11 867–22 653 L/kg dm in the 0.5 μg Se/L treatment among lakes. Periphyton Se uptake differed among the five study lakes, with periphyton from mesotrophic lakes generally accumulating more Se than periphyton from oligotrophic lakes. Higher proportions of charophytes and greater dissolved inorganic carbon in more oligotrophic lakes corresponded to less periphyton Se uptake. Conversely, increased proportions of bacillariophytes and total dissolved phosphorus in more mesotrophic lakes corresponded to greater periphyton Se uptake. Periphyton community composition and water chemistry variables were correlated, limiting interpretation of differences in periphyton Se accumulation among lakes. The results of this research provide insight on the biodynamics of Se assimilation at the base of boreal lake food webs at environmentally relevant concentrations, which can potentially inform ecological risk assessments in boreal lake ecosystems in North America.
Показать больше [+] Меньше [-]Artificial light at night (ALAN) affects behaviour, but does not change oxidative status in freshwater shredders
2022
Czarnecka, Magdalena | Jermacz, Łukasz | Glazińska, Paulina | Kulasek, Milena | Kobak, Jarosław
Artificial light at night (ALAN) alters circadian rhythms in animals and therefore can be a source of environmental stress affecting their physiology and behaviour. The impact of ALAN can be related to the increased light level, but also to the spectral composition of night lighting. Previous research showed that many species can be particularly sensitive to the LED light, but it is unclear if they respond to its broad spectrum or specifically to the blue light wavelength. In this study, we tested whether dim ALAN (2 lx) differing in the spectral quality (warm white LED, blue LED, high-pressure sodium HPS light) modifies behaviour and changes oxidative status in two nocturnal freshwater shredder species: Dikerogammarus villosus and Gammarus jazdzewskii (Gammaroidea, Amphipoda). Our experiment revealed that ALAN, irrespective of its spectral quality, did not affect the oxidative stress markers in cells (the level of reactive oxygen species and lipid peroxidation). However, ALAN changed the gammarid behaviour in a species-specific manner, which can potentially reduce the fitness of the shredders. Dikerogammarus villosus avoided all types of light compared to darkness. Therefore, confined to the shelter, D. villosus may have fewer opportunities to forage and/or mate. Gammarus jazdzewskii was sensitive only to the narrow-spectrum blue light, but did not respond to the HPS and white LED light. Avoidance is a typical response of gammarids to natural light, thus the disruption of this behaviour in the presence of common ALAN sources can increase the predation risk in this species. To summarize, behavioural modifications induced by ALAN seem more pronounced than changes in physiology and can constitute the main driver of disturbances in the processing of organic matter in freshwater ecosystems by invertebrate shredders.
Показать больше [+] Меньше [-]