Уточнить поиск
Результаты 1-10 из 22
Polystyrene particles combined with di-butyl phthalate cause significant decrease in photosynthesis and red lettuce quality Полный текст
2021
Dong, Youming | Song, Zhengguo | Liu, Yu | Gao, Minling
Microplastics, an emerging pollutant in the environment, have attracted extensive attention in recent years for their possible negative impact on organisms. However, direct and indirect effects of polystyrene (PS) microplastics on vegetables are still not completely known. In this study, we used red lettuce (Lactuca sativa L. Red Sails) in a hydroponic system to investigate the effects of nano- and micro-sized PS and dibutyl phthalate (DBP) on the photosynthesis and red lettuce quality. The results clearly indicated that PS reduced the bioavailability of DBP while causing a decrease in the photosynthetic parameters as well as the total chorophyll content compared to DBP alone by affecting the crystalline structure of the water-soluble chlorophyll protein. Compared with DBP monotherapy, the presence of PS significantly increased hydrogen peroxide and malondialdehyde content in the lettuce treated with DBP, indicating serious oxidative damage. Furthermore, the soluble protein and sugar content in lettuce leaves decreased with higher PS concentration and smaller PS size. It may be due to PS inhibited lettuce root and ribulose-1,5-bisphosphate carboxylase/oxygenase activities. In contrast, nitrite content increased significantly with the induction of the glutathione-ascorbic acid cycle, indicating that the presence of PS reduced the quality of DBP-treated-red lettuce. Additionally, the nano-sized PS greatly inhibited lettuce growth and quality more than the micro-sized PS. This study described the interactions between microplastics and phthalates using molecular simulation and experimental validation to highlight the potential risks of microplastics on vegetable crop production.
Показать больше [+] Меньше [-]Variations in growth behavior, yield and DNA stability of two vegetable crops cultivated in radioactive spiked soils Полный текст
2020
Negm, Hani | Younes, Nabil Ahmed | Rabee, Ayat | Youssef, Muhammad
Radioactive pollution comes on the top of pollution types that affect human life directly through damaging the human genome or indirectly via his food web. The current study focused on the evaluation of radiation effects of Assiut Thermal Power Plant (ATPP) ashes on two crop plants, potato and squash, in terms of morphological and molecular levels. More particularly, the specific activity concentrations were measured in Bq/kg, of the ²³⁸U (²²⁶Ra) and ²³²Th series, and ⁴⁰K-isotope for the untreated soil sample (control) and ATPP ash sample (represents the radioactive source with 100% concentration). Different concentrations of ATPP ash (0, 2, 4, 6 and 8%) were mixed with soil sample to study the effect of radioactively contaminated soil on potato and squash plants. The results of the present investigation revealed that the morphological characteristics of both potato and squash plants were changed, which reflected a steep regression in the values of all vegetative growth and yield traits. The alterations of the characteristic values were directly proportional to the radioactive ash concentration in the soil. In the same context, the molecular evaluation using PCR-based markers, e.g., ISSR and SCoT helps in understanding and explaining experimental observations at morphological level. ISSR/SCoT bands confirmed the toxicity and mutagenicity of radioactive ash samples at their present dose on both potato and squash plants. The present findings clearly explained the morphometric and genetic abnormalities in two of the main consumed crops by a human. Thus, the green area around the ATPP may disappear in the future due to increasing the pollution in terms of the radioactive component that directly attached to plants or indirectly by mixing with soil.
Показать больше [+] Меньше [-]Trichoderma asperellum reduces phoxim residue in roots by promoting plant detoxification potential in Solanum lycopersicum L Полный текст
2020
Chen, Shuangchen | Yan, Yaru | Wang, Yaqi | Wu, Meijuan | Mao, Qi | Chen, Yifei | Ren, Jingjing | Liu, Airong | Lin, Xiaomin | Ahammed, Golam Jalal
Phoxim, a broad-spectrum organophosphate pesticide, is widely used in agriculture to control insect pests in vegetable crops as well as in farm mammals. However, the indiscriminate use of phoxim has increased its release into the environment, leading to the contamination of plant-based foods such as vegetables. In this study, we investigated the effect of Trichoderma asperellum (TM, an opportunistic fungus) on phoxim residue in tomato roots and explored the mechanisms of phoxim metabolism through analysis of detoxification enzymes and gene expression. Degradation kinetics of phoxim showed that TM inoculation rapidly and significantly reduced phoxim residues in tomato roots. Phoxim concentrations at 5d, 10d and 15d post treatment were 75.12, 65.71 and 77.45% lower in TM + phoxim than only phoxim treatment, respectively. The TM inoculation significantly increased the glutathione (GSH) content, the activity of glutathione S-transferase (GST) and the transcript levels of GSH, GST1, GST2 and GST3 in phoxim-treated roots. In addition, the activity of peroxidase and polyphenol peroxidase involved in the xenobiotic conversion also increased in TM + phoxim treatment. The expression of detoxification genes, such as CYP724B2, GR, ABC2 and GPX increased by 3.82, 3.08, 7.89 and 2.46 fold, respectively in TM + phoxim compared with only phoxim. Similarly, the content of ascorbate (AsA) and the ratio of AsA to dehydroascorbate increased by 45.16% and 57.34%, respectively in TM + phoxim-treated roots. Our results suggest that TM stimulates plant detoxification potential in all three phases (conversion, conjugation and sequestration) of xenobiotc metabolism, leading to a reduced phoxim residue in tomato roots.
Показать больше [+] Меньше [-]Effects of ozone on crops in north-west Pakistan Полный текст
2013
Ahmad, Muhammad Nauman | Büker, Patrick | Khalid, Sofia | Van Den Berg, Leon | Shah, Hamid Ullah | Wahid, Abdul | Emberson, Lisa | Power, Sally A. | Ashmore, Mike
Although ozone is well-documented to reduce crop yields in the densely populated Indo-Gangetic Plain, there is little knowledge of its effects in other parts of south Asia. We surveyed crops close to the city of Peshawar, in north-west Pakistan, for visible injury, linking this to passive measurements of ozone concentrations. Foliar injury was found on potato, onion and cotton when mean monthly ozone concentrations exceeded 45 ppb. The symptoms on onion were reproduced in ozone fumigation experiments, which also showed that daytime ozone concentrations of 60 ppb significantly reduce the growth of a major Pakistani onion variety. Aphid infestation on spinach was also reduced at these elevated ozone concentrations. The ozone concentrations measured in April–May in Peshawar, and used in the fumigation experiment, are comparable to those that have been modelled to occur over many parts of south Asia, where ozone may be a significant threat to sensitive crops.
Показать больше [+] Меньше [-]How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany Полный текст
2012
Säumel, Ina | Kotsyuk, Iryna | Hölscher, Marie | Lenkereit, Claudia | Weber, Frauke | Kowarik, Ingo
Food production by urban dwellers is of growing importance in developing and developed countries. Urban horticulture is associated with health risks as crops in urban settings are generally exposed to higher levels of pollutants than those in rural areas. We determined the concentration of trace metals in the biomass of different horticultural crops grown in the inner city of Berlin, Germany, and analysed how the local setting shaped the concentration patterns. We revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and building structures, but not on vegetable type. Higher overall traffic burden increased trace metal content in the biomass. The presence of buildings and large masses of vegetation as barriers between crops and roads reduced trace metal content in the biomass. Based on this we discuss consequences for urban horticulture, risk assessment, and planting and monitoring guidelines for cultivation and consumption of crops.
Показать больше [+] Меньше [-]Effects of regulated deficit irrigation applied at different growth stages of greenhouse grown tomato on substrate moisture, yield, fruit quality, and physiological traits Полный текст
2021
GHANNEM, Amal | BEN AISSA, Imed | MAJDOUB, Rajouene
Given a critical water scarcity in arid and semi-arid Tunisian areas and aiming to reduce irrigation water request, it is crucial to identify and apply the best water-saving practices in these irrigated areas. Tomato is a high-water-requiring vegetable crop, thus increasing the pressure on water resources and environment. Its sustainable cultivation in such alarming conditions requires an adaptation of on-farm irrigation water-saving strategies preserving also the crop yield and leading to a fruit quality improvement. This study aimed to explore the effects of the regulated deficit irrigation (RDI) as an irrigation water-saving strategy, on yield, fruit quality, and physiological behavior of greenhouse grown potted tomato crop (Solanum lycopersicum L.) during three identified growth stages. The managed water regimes were (i) full irrigation (FI) ensuring 100% of the estimated water crop requirements, (ii) RDI1-25 and RDI1-50 ensuring respectively 75% and 50% of FI water supplies during the vegetative crop stage (stage I), (iii) RDI2–25 and RDI2–50 ensuring respectively 75% and 50% of FI water supplies from first truss blossom until first harvest (stage II), and (iv) RDI3-25 and RDI3-50 ensuring respectively 75% and 50% of FI supplies during the rest of the harvest period (stage III). The results showed that the substrate moisture vary significantly with the water deficit regime applied under different growth stages, thus providing different levels of substrate water content. Under RDI2, the tomato yield was the highest when compared with FI, RDI1, and RDI3 regimes. Indeed, saving the water by 20% under RDI2-50 reduced only 3% of tomato yield. Deficit irrigation under ripening fruit and flowering stages, mainly with 50% of water supplies shortage, resulted in higher fruit skin color, firmness, and refractometry index (°Brix) when compared to FI and RDI1. Physiological traits measurements indicated that FI exhibited the highest leaf stomatal conductance (gs) and chlorophyll index (CI) values while RDI3 exhibited the lowest gs and CI values among all the RDI treatments. Results are valuable in considering gs and CI as an efficient indicators of tomato plant water status. The results are also an important contribution to identify the second tomato growth stage as the best period that tomato plant tolerate water shortage without significant yield decrease, as well a rather fruit quality improvement. These results help to reach the challenge “more crop per drop” and can contribute to water scarcity remediation.
Показать больше [+] Меньше [-]Evaluation of trace metal accumulation in six vegetable crops intercropped with phytostabilizing plant species, in a French urban wasteland Полный текст
2021
Laffray, Xavier | Toulaïb, Kamal | Balland-Bolou-Bi, Clarisse | Bagard, Matthieu | Leitão, Luis | Huguenot, David | Alphonse, Vanessa | Abbad-Andaloussi, Samir | Livet, Alexandre | Bousserrhine, Noureddine | Leymarie, Juliette | Repellin, Anne
Evaluation of trace metal accumulation in six vegetable crops intercropped with phytostabilizing plant species, in a French urban wasteland Полный текст
2021
Laffray, Xavier | Toulaïb, Kamal | Balland-Bolou-Bi, Clarisse | Bagard, Matthieu | Leitão, Luis | Huguenot, David | Alphonse, Vanessa | Abbad-Andaloussi, Samir | Livet, Alexandre | Bousserrhine, Noureddine | Leymarie, Juliette | Repellin, Anne
The extensive development of agriculture in urban and peri-urban wastelands polluted with several trace elements (TE) poses risks to human health through contaminated food products. The objective was to explore the accumulation of TE in the various parts of vegetable crop plants (tomato, French bean, radish, potato, spinach, and leek) intercropped with phytostabilizing plant species (ryegrass and white clover, respectively). Field studies were conducted in a multicontaminated French urban wasteland with Cd, Cu, Pb and Zn, and an alkaline soil pH. Analyses of the respective non-edible parts of monocultured vegetable crops showed accumulation of all TE, mostly Zn, then Pb and Cu, and finally Cd. The corresponding TE accumulation factors (soil to plant) were all below 0.25. In the edible parts, average concentrations for TE were above the limit values, according to European and Chinese standards. TE contents in the phytostabilizing species chosen were in the same orders of magnitude and the same ranking as described for vegetable crops and most accumulation was in the roots. Unexpectedly, the presence of the phytostabilizing plants had a very strong positive impact on the soil to plant accumulation factor. Moreover, the edible plant parts were poorly impacted by the co-cropping with phytostabilizing plants.
Показать больше [+] Меньше [-]Evaluation of trace metal accumulation in six vegetable crops intercropped with phytostabilizing plant species, in a French urban wasteland
Slingram Prediction of Optimal Vegetable Yields in Drought-Affected Alkaline Soil Полный текст
2017
Cassel, Florence
Drought is a serious concern in many parts of the world, including in California, where paucity of available irrigation water has impaired crop production and soil health through salt accumulation. With extending water and salinity crises, there is a need for advanced salt and vegetation management. To develop more efficient management solutions, Slingram electromagnetic investigations and stochastic and statistical analyses were performed for determining optimal vegetable yields in a salt-affected farmland. The Slingram results were evaluated using multi-linear regression analyses, and the yield and salinity were characterized for central tendency, variance, distributions and symmetry. The yields of two studied vegetable crops, lettuce and tomato, increased with decreasing salinity load. The average lettuce and tomato yield potentials were 55 and 75%, respectively. The minimum yield potential for tomato was 9.5 times higher than that for lettuce. The mode value for conductivity (ECₑ) was 650 mS m⁻¹, which corresponded to 50% yield loss. The yield loss was <10% in locations with ECₑ < 250 mS m⁻¹. In zones with ECₑ > 850 mS m⁻¹, the yield reductions for lettuce and tomato reached up to 96 and 60%, respectively. About 57 and 82% of the field area could be limited to 20% yield potentials for tomato and lettuce, respectively. Lettuce had a higher cost benefit than tomato albeit with a greater yield potential of the latter crop. By delineating the spatial contours of salt-induced yield variability, vegetables can be grown in segmented soil zones based on salinity levels.
Показать больше [+] Меньше [-]Occurrence of heavy metal in water, soil, and plants in fields irrigated with industrial wastewater in Sabata town, Ethiopia Полный текст
2021
Gemeda, Fekede Terefe | Guta, Dawit Diriba | Feyera Senbeta Wakjira, | Gebresenbet, Girma
Industrial wastes have been increasingly discharged into water and soil, and causing environmental pollution in Ethiopia. This study examined the occurrence of heavy metal in water, soil, and plants in fields irrigated with industrial wastewater in Sabata town, Ethiopia. The composite samples of soil, water, and vegetables were collected accordingly to determine the concentration of heavy metals (Cu, Pb, Zn, Mn, and Ni) in each system during dry and wet seasons. The concentration of heavy metal was assayed using atomic absorption spectrophotometry. The data were statistically analyzed using one-way ANOVA. The heavy metal concentration was decreased in the order of Pb > Mn > Ni > Cu > Zn, Mn > Ni > Pb > Cu > Zn, and Ni > Pb > Mn > Cu > Zn in the water, soil, and vegetables in the area respectively. The variation of levels of heavy metal in the water, soil, and vegetable might be because of the effect of heavy metal speciation and valence, industry types, vegetable types and tissues, and soil. The bioconcentration factor of heavy metals was higher than that one for copper, signifying the increased probability of health risk for those who are consuming vegetables grown in the area. Thus, the government should take this into account and devise mitigation strategies through the implementation of heavy metal removal systems from contaminated water and soil, waste management strategies of recycling, centralized or decentralized treatment plant, changing of industrial residual into biogas production, and awareness creation for the society.
Показать больше [+] Меньше [-]Slow-release nitrogen fertilizers can improve yield and reduce Cd concentration in pakchoi (Brassica chinensis L.) grown in Cd-contaminated soil Полный текст
2016
Zhang, Ran-Ran | Liu, Yue | Xue, Wan-Lei | Chen, Rong-Xin | Du, Shao-Ting | Jin, Chong-Wei
Cadmium (Cd) pollution in vegetable crops has become a serious problem in recent years. Owing to the limited availability of arable land resources, large areas of Cd-contaminated lands are inevitably being used for the production of vegetables, posing great risks to human health via the food chain. However, strategies to improve yield and reduce Cd concentration in crops grown in contaminated soils are being developed. In the present study, using pot experiments, we investigated the effects of two slow-release nitrogen fertilizers (SRNFs), resin-coated ammonium nitrate (Osmocote₃₁₃ₛ), and resin-coated urea (urea₆₂₀), on the growth and Cd concentration of the Cd-contaminated pakchoi. The results showed that pakchoi grown in soil containing 5 mg kg⁻¹ of Cd-induced oxidative stress (indicated by malondialdehyde (MDA), H₂O₂, and O₂ ·⁻) and photosynthesis inhibition, which in turn was restored with the application of SRNFs. However, pakchoi grown in Cd-contaminated soil supplied with Osmocote₃₁₃ₛ and urea₆₂₀ showed 103 and 203 % increase in fresh weight and 51–55 % and 44–56 % decrease in Cd concentration, respectively, as compared with their controls (pakchoi treated with instant soluble nitrogen fertilizers). On the basis of an increase in their tolerance index (47–238 %) and a decrease in their translocation factor (7.5–21.6 %), we inferred that the plants treated with SRNFs have a stronger tolerance to Cd and a lower efficiency of Cd translocation to edible parts than those treated with instant soluble nitrogen fertilizers. Therefore, in terms of both crop production and food safety, application of SRNFs could be an effective strategy for improving both biomass production and quality in pakchoi grown under Cd stress.
Показать больше [+] Меньше [-]