Уточнить поиск
Результаты 1111-1120 из 1,955
Not All Phosphate Fertilizers Immobilize Lead in Soils Полный текст
2013
Xie, Zheng Miao | Chen, Jianjun | Naidu, R.
The effects of six phosphate (P) fertilizers in mobilizing and immobilizing water-soluble lead (Pb) were determined in a contaminated soil (Alfisol from Shaoxing) from China and four Australian soils (an Oxisol from Twonsville Queensland and three South Australian soils from Cooke Plains (Typic Palexeralf)), Inman Valley (Vertisol), and Two Wells (Natric Palexeralf). The fertilizers tested were single superphosphate (SSP), triple superphosphate (TSP), monoammonium phosphate (MAP), diammonium phosphate (DAP), monocalcium phosphate (MCP), and dicalcium phosphate (DCP) to produce an initial P concentration of 1,000 mg/L. The Chinese soil contained 16,397 mg/kg total Pb, but the Australian soils were uncontaminated. The four Australian soils were each spiked with 1,000 mg Pb/kg soil (as Pb(NO3)2) and incubated for a month. Single superphosphate treatments decreased total soluble Pb in soil solution to 2-14 % of those of the nil-P (0P) treatment in the four Pb-spiked soils and to 48 % in the Chinese Pb-contaminated soil. The DAP treatment followed by the MAP treatment greatly increased the total soluble Pb in soil solution up to 135-500 % of the 0P treatment, except in the Two Wells soil. MCP could decrease the total soluble Pb in Cooke Plains, Inman Valley, Shaoxing, and Two Wells soils while increase it in the Queensland soil; DCP decreased the total soluble Pb in Cooke Plains and Queensland soils while increased it in the Shaoxing and Inman Valley soils. There were close relationships between the total soluble Pb, total soluble Al, and total soluble Fe in the water extracts of each. Soluble Al and Fe ions in soil solution increased soluble Pb concentrations. We conclude that not all phosphate fertilizers immobilize Pb in soils equally well. SSP and TSP are excellent Pb-immobilizing fertilizers, while MAP and DAP are strong Pb-mobilizing fertilizers. MCP and DCP are either Pb-immobilizing fertilizers or Pb-mobilizing fertilizers depending on their reactions with individual soils. © 2013 Springer Science+Business Media Dordrecht.
Показать больше [+] Меньше [-]Photocatalytic Degradation of Phytotoxic Substances in Waste Nutrient Solution by Various Immobilized Levels of Nano-TiO₂ Полный текст
2013
Qiu, Zhiping | Yang, Qichang | Liu, Wenke
The photocatalytic degradation effectiveness of six selected typical phytotoxic substances (ferulic, benzoic, gallic, salicylic, tannic, and acetic acid) by two levels of 10 nm TiO₂ (11 and 22 g/m²) immobilized on tiles under 254 nm of UV light irradiation was investigated. The results showed that the immobilized nano-TiO₂ significantly degraded all phytotoxic substances dissolved in distilled water, and the cumulative degradation rates of ferulic, benzoic, gallic, salicylic, tannic, and acetic acid reached 22.2, 33.6, 48.2, 56.9, 57.5, and 76.0 % after 6 h of treatment, respectively. Furthermore, the cumulative degradation rates of six phytotoxic substances by immobilized nano-TiO₂ were different remarkably, i.e., salicylic acid > benzoic acid, gallic acid > ferulic acid, acetic acid > tannic acid. The maximal photocatalytic degradation efficiencies of all phytotoxic substances appeared at the first 2 h in the three experiments. During the 6-h treatment period, the photocatalytic degradation efficiency of all phytotoxic substances decreased gradually. There was no significant difference in the photocatalytic degradation of benzoic acid and ferulic acid between the two levels of immobilized nano-TiO₂ treatments, whereas a significant difference was found in the photocatalytic degradation of salicylic acid, gallic acid, tannic acid, and acetic acid. In a word, nano-TiO₂ photocatalysis is an effective method to degrade phytotoxic substances. And the photocatalytic degradation effectiveness of six typical phytotoxic substances may be related to their structures.
Показать больше [+] Меньше [-]Lead and Arsenic Uptake by Leafy Vegetables Grown on Contaminated Soils: Effects of Mineral and Organic Amendments Полный текст
2013
McBride, Murray B. | Simon, Tobi | Tam, Geoffrey | Wharton, Sarah
To assess strategies for mitigating Pb and As transfer into leafy vegetables from contaminated garden soils, we conducted greenhouse experiments using two field-contaminated soils amended with materials expected to reduce metal phytoavailability. Lettuce and mustard greens grown on these soils were analyzed by ICP-MS, showing that some Pb and As transfer into the vegetables occurred from both soils tested, but plant Pb concentrations were highly variable among treatment replicates. Soil-to-plant transfer was more efficient for As than for Pb. Contamination of the leaves by soil particles probably accounted for most of the vegetable Pb, since plant Pb concentrations were correlated to plant tissue concentrations of the immobile soil elements Al and Fe. This correlation was not observed for vegetable As concentrations, evidence that most of the soil-to-plant transfer for this toxic metal occurred by root uptake and translocation into the above-ground tissues. A follow-up greenhouse experiment with lettuce on one of the two contaminated soils revealed a lower and less variable foliar Pb concentration than observed in the first experiment, with evidence of less soil particle contamination of the crop. This reduced transfer of Pb to the crop appeared to be a physical effect attributable to the greater biomass causing reduced overall exposure of the above-ground tissues to the soil surface. Attempts to reduce soil Pb and As solubility and plant uptake by amendment at practical rates with stabilizing materials, including composts, peat, Ca phosphate, gypsum, and Fe oxide, were generally unsuccessful. Only Fe oxide reduced soluble As in the soil, but this effect did not persist. Phosphate amendment rapidly increased soil As solubility but had no measurable effect on either soil Pb solubility or concentrations of Pb or As in the leafy vegetables. The ineffectiveness of these amendments in reducing Pb transfer into leafy vegetables is attributed in this study to the low initial Pb solubility of the studied soils and the fact that the primary mechanism of Pb transfer is physical contamination.
Показать больше [+] Меньше [-]Electrochemical Degradation of the Reactive Red 141 Dye Using a Boron-Doped Diamond Anode Полный текст
2013
Aquino, José Mario | Rocha-Filho, Romeu C. | Rodrigo, Manuel A. | Sáez, Cristina | Cañizares, Pablo
The electrochemical degradation of the Reactive Red 141 azo dye was done using a one-compartment filter-press flow cell with a boron-doped diamond anode. The response surface methodology (with a central composite design) was used to investigate the effect of current density (10–50 mA cm⁻²), pH (3–11), NaCl concentration ([NaCl]) (0–2.34 g L–¹), and temperature (15–55 °C) on the system’s performance. The charge required for 90 % decolorization (Q ⁹⁰), the fraction of chemical oxygen demand removal after 6 min of electrolysis (COD⁶), and the fraction of total organic carbon removal after 90 min of electrolysis (TOC⁹⁰) were used to model the obtained results. The lowest values of Q ⁹⁰ were attained at pH <4 in the presence of higher values of [NaCl] (>1.5 g L⁻¹), due to the electrogeneration of active chlorine, present mainly as HClO. The value of COD⁶ was not affected by the solution pH, but increased with [NaCl] up to 1.5 g L⁻¹. Higher temperatures (>40 °C) led to a decrease in COD⁶, as a consequence of side reactions. Higher values of TOC⁹⁰, which can be reached only with strong oxidants (such as ·OH and Cl·), were efficiently attained at low [NaCl] values (<0.7 g L⁻¹) in acidic solutions that inhibit the formation of ClO₃ ⁻ and ClO₄ ⁻. Finally, the obtained results allow inferring that most probably the mineralization of the dye starts with an attack on the chromophore group, followed by the degradation of intermediate species.
Показать больше [+] Меньше [-]Persistence and Dissipation Kinetics of Clothianidin in the Soil of Tropical Sugarcane Ecosystem Полный текст
2013
Ramasubramanian, Thirumalaiandi
Persistence and dissipation kinetics of clothianidin were studied in sandy loam soil of sugarcane ecosystem by adopting a rapid and sensitive analytical method. This single-step analytical method was observed to be superior to multi-step conventional method reported to quantify the residues of clothianidin in soil, in terms of recovery, sensitivity and rapidity besides cost-effectiveness. The recoveries of clothianidin were in the range of 93.19 ± 3.07-95.43 ± 2.09 % at 0.01-0.1 μg/g level of fortification in soil. The limit of quantification of the method was 0.01 μg/g. Dissipation pattern of clothianidin followed first-order kinetics with a good fit (R 2 > 0.96). Half-life of clothianidin was 17.2 and 17.4 days at the single (50 g a.i./ha) and double doses (100 g a.i./ha), respectively. Clothianidin was observed to be more persistent than imidacloprid and thiamethoxam in the soil of tropical sugarcane ecosystem. © 2013 Springer Science+Business Media Dordrecht.
Показать больше [+] Меньше [-]Sorption of As(V) by Aluminum-Modified Crop Straw-Derived Biochars Полный текст
2013
Qian, Wei | Zhao, An-zhen | Xu, Ren-kou
Biochars derived from the straws of rice, soybean, and peanut were prepared and modified with aluminum [Al(III)]. These modifications shifted zeta potential-pH curves of the biochars in a positive-value direction and changed surface charge of biochars from negative to positive under acidic conditions. The isoelectric points for 0.6 M Al(III)-modified rice, soybean, and peanut straw biochars were 8.0, 7.8, and 7.5, respectively. Electrostatic attraction of the positively charged surfaces on Al(III)-modified biochars to arsenate [As(V)] enhanced its sorption. The sorption of As(V) by these Al(III)-modified biochars was investigated in batch experiments. Al(III)-modified biochars had greater sorption capacity under acidic conditions compared with corresponding unmodified biochars. While unmodified biochars sorbed negligible amounts of As(V), their Al(III)-modified forms sorbed 445-667 mmol kg-1 at pH 5.0, which were predicted by the Langmuir equation. Modifications with 0.3 M Al3+ improved sorption capacity of As(V) on soybean straw biochar to 445 mmol kg-1, which was further increased by 50 % after modification with 0.6 M Al3+. These As(V) sorption capacities of biochars modified with 0.6 M Al3+ were larger than those of Fe/Al oxides determined at the same pH, which were < 500 mmol kg-1. Thus, biochars modified with 0.6 M Al3+ could substitute Fe/Al oxides used for water purification. However, the sorption of As(V) by the Al(III)-modified biochars increased with decreasing suspension pH. Thus, As(V) removal by Al(III)-modified biochars is suggested to be conducted under acidic conditions, but at pH > 4.0. © 2013 Springer Science+Business Media Dordrecht.
Показать больше [+] Меньше [-]Degradation of Humic Acid by Photocatalytic Reaction Using Nano-sized ZnO/Laponite Composite (NZLC) Полный текст
2013
Kim, Jong Kyu | Alajmy, Jawaher | Borges, Alisson Carraro | Joo, Jin Chul | Ahn, Hosang | Campos, Luiza Cintra
Humic acids (HA) are known as the precursors of carcinogenic compounds formed by the disinfection of drinking water. While conventional treatments were found to be inefficient HA removal processes in drinking water, advanced oxidation processes have been proven to have a significant effect in the treatment of HA. The degradation of HA was investigated using nano-sized zinc oxide (ZnO)/laponite composite (NZLC). The reactions occurred in a UVC reactor by considering following variables: pH, initial HA concentration, catalyst loading, addition of hydrogen peroxide (H2O2), and catalyst reuse. Water samples containing HA were analysed by ultraviolet/visible spectrophotometer and high-performance size-exclusion chromatography. Initial HA concentrations were tested by the Langmuir-Hinshelwood model with k and K ads values, determined to be 0.126 mg/L.min and 0.0257 L/mg, respectively. The change in pH affected the HA degradation efficiency by the photocatalytic activity where it was higher under acidic conditions rather than alkaline ones. Optimal catalyst loading was proved to be a constrained factor in influencing the photocatalytic efficiency: the increase of catalyst concentration enhanced the HA decomposition efficiency up to an optimum value of 20 g/L, where there was no further degradation with excess loading. The addition of H2O2 was investigated through homogenous and heterogeneous photocatalysis, and, heterogeneous photocatalysis showed higher removal efficiency due to the combined effect of both catalysts and H 2O2. Finally, NZLC was effective for reuse and exhibited an excellent stability after six times of usage. © 2013 Springer Science+Business Media Dordrecht.
Показать больше [+] Меньше [-]Comparative Sorption and Mobility of Cr(III) and Cr(VI) Species in a Range of Soils: Implications to Bioavailability Полный текст
2013
Choppala, Girish | Bolan, Nanthi | Lamb, Dane | Kunhikrishnan, Anitha
The sorption of chromium (Cr) species to soil has become the focus of research as it dictates the bioavailability and also the magnitude of toxicity of Cr. The sorption of two environmentally important Cr species [Cr(III) and Cr(VI)] was examined using batch sorption, and the data were fitted to Langmuir and Freundlich adsorption isotherms. The effects of soil properties such as pH, CEC, organic matter (OM), clay, water-extractable SO₄ ²– and PO₄ ³–, surface charge, and different iron (Fe) fractions of 12 different Australian representative soils on the sorption, and mobility of Cr(III) and Cr(VI) were examined. The amount of sorption as shown by K f was higher for Cr(III) than Cr(VI) in all tested soils. Further, the amount of Cr(III) sorbed increased with an increase in pH, CEC, clay, and OM of soils. Conversely, the chemical properties of soil such as positive charge and Fe (crystalline) had a noticeable influence on the sorption of Cr(VI). Desorption of Cr(VI) occurred rapidly and was greater than desorption of Cr(III) in soils. The mobility of Cr species as estimated by the retardation factor was higher for Cr(VI) than for Cr(III) in all tested soils. These results concurred with the results from leaching experiments which showed higher leaching of Cr(VI) than Cr(III) in both acidic and alkaline soils indicating the higher mobility of Cr(VI) in a wide range of soils. This study demonstrated that Cr(VI) is more mobile and will be bioavailable in soils regardless of soil properties and if not remediated may eventually pose a severe threat to biota.
Показать больше [+] Меньше [-]Effect of Disposal of Effluent and Paunch from a Meat Processing Factory on Soil Chemical and Microbial Properties Полный текст
2013
Liu, Y.-Y. | Haynes, R. J.
The effects of irrigation with meat processing factory effluent (MPE) in combination with additions of paunch to three arable sites and one pasture site on soil chemical and microbial properties were investigated in fields surrounding a beef meat processing factory. A pasture site that had only received MPE was also sampled along with adjoining arable and pasture control fields that had never received MPE or paunch. Additions of MPE/paunch caused increases in electrical conductivity, exchangeable Na and K, exchangeable sodium percentage (ESP), extractable P, organic C, total N, microbial biomass C, and metabolic quotient and decreases in exchangeable Ca and Mg, pH, and the proportion of organic C present as microbial biomass. The structure and diversity of bacterial and fungal communities was measured by polymerase chain reaction–denaturing gradient gel electrophoresis of 16S rDNA and internal transcribed spacer-RNA amplicons respectively and catabolic diversity by analysis of catabolic response profiles to 25 substrates. Principal component analysis of catabolic response profiles clearly separated control from MPE/paunch-treated sites, and this was associated with greater catabolic responses to the carboxylic acids α-ketoglutaric, α-ketobutyric, L-ascorbic, and citric acid in the control. At the arable sites, application of MPE and paunch caused increases in bacterial, fungal, and catabolic diversity. Canonical correspondence analysis of the relationship between catabolic, bacterial, and fungal fingerprints and soil properties indicated that the main soil variables separating MPE/paunch treatments from controls were the higher organic C, ESP, and extractable P and a lower pH, exchangeable Ca, and Mg. It was concluded that, although long-term MPE/paunch additions induce soil salinity, sodicity, and acidity, in general, they cause an increase in the size, activity, and structural and functional diversity of in the soil microbial community.
Показать больше [+] Меньше [-]Simultaneous Removal of Azo and Phthalocyanine Dyes from Aqueous Solutions Using Weak Base Anion Exchange Resin Полный текст
2013
Kaušpėdienė, D. | Gefenienė, A. | Kazlauskienė, E. | Ragauskas, R. | Selskienė, A.
The performance of the Purolite A847 weak basic anion exchanger in the simultaneous removal of the azo dye Lanasyn Navy M-DNL (LNCr) and the phthalocyanine dye Acid Blue 249 (CuPc) from acidic aqueous solutions was studied under dynamic conditions. The comparison of FTIR spectra of unloaded and dye-loaded anion exchangers made it possible to consider suitable sorption mechanisms. The results of dynamic experiments revealed that anion exchanger had a greater dynamic sorption capacity with a longer breakthrough time and a shorter length of mass transfer zone when both dyes LNCr and CuPc were removed from the one-component solution as compared to those of their mixture. Models of Wolborska and Juang were found to be suitable to predict the character of breakthrough curves and to determine the characteristic parameters of the Purolite A847 column useful for process design: the mass transfer coefficient β (1/min) and time at the break point τ (minutes). The result would be useful in the design of wastewater treatment plants for removal of azo and phthalocyanine dyes from aqueous solutions and water recycling.
Показать больше [+] Меньше [-]