Уточнить поиск
Результаты 1211-1220 из 7,290
Causation inference in complicated atmospheric environment Полный текст
2022
Chen, Ziyue | Xu, Miaoqing | Gao, Bingbo | Sugihara, G. | Shen, Feixue | Cai, Yanyan | Li, Anqi | Wu, Qi | Yang, Lin | Yao, Qi | Chen, Xiao | Yang, Jing | Zhou, Chenghu | Li, Manchun
Reliable attribution is crucial for understanding various climate change issues. However, complicated inner-interactions between various factors make causation inference in atmospheric environment highly challenging. Taking PM₂.₅-Meteorology causation, which involves a large number of non-Linear and uncertain interactions between many meteorological factors and PM₂.₅, as a case, we examined the performance of a series of mainstream statistical models, including Correlation Analysis (CA), Partial Correlation Analysis (PCA), Structural Equation Model (SEM), Convergent Cross Mapping (CCM), Partial Cross Mapping (PCM) and Geographical Detector (GD). From a coarse perspective, the Top 3 major meteorological factors for PM₂.₅ in 190 cities across China extracted using different models were generally consistent. From a strict perspective, the extracted dominant meteorological factor for PM₂.₅ demonstrated large model variations and shared a limited consistence. Such models as SEM and PCM, which are capable of further separating direct and indirect causation in simple systems, performed poorly to identify the direct and indirect PM₂.₅-Meteorology causation. The notable inconsistence denied the feasibility of employing multiple models for better causation inference in atmospheric environment. Instead, the sole use of CCM, which is advantageous in dealing with non-linear causation and removing disturbing factors, is a preferable strategy for causation inference in complicated ecosystems. Meanwhile, given the multi-direction, uncertain interactions between many variables, we should be more cautious and less ambitious on the separation of direct and indirect causation. For better causation inference in the complicated atmospheric environment, the combination of statistical models and atmospheric models, and the further exploration of Deep Neural Network can be promising strategies.
Показать больше [+] Меньше [-]Ecological-health risks assessment and source apportionment of heavy metals in agricultural soils around a super-sized lead-zinc smelter with a long production history, in China Полный текст
2022
Zhou, Yan | Jiang, Dengdeng | Ding, Da | Wu, Yunjing | Wei, Jing | Kong, Lingya | Long, Tao | Fan, Tingting | Deng, Shaopo
Smelting activities are considered as the primary cause of heavy metal (HM) accumulation in soils, and the human health around the smelter has been a great concern worldwide. In this study, a total of 242 agricultural soil samples were collected around a large scale Pb/Zn smelter in China, and eight HMs (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) were analyzed to assess HMs status, ecological -health risks, and identify source. Monte Carlo simulation was utilized to evaluate the probabilistic health risks, and positive matrix factorization (PMF) was employed to identify sources. The results revealed the average contents of five heavy metals (Cd 5.28 mg/kg, Pb 203.36 mg/kg, Hg 0.39 mg/kg, Zn 293.45 mg/kg, Cu 37.14 mg/kg) are higher than their background values in Hunan province. Cd had the highest mean pollution index (PI) of 41.8 and the greatest average ecological risk index (Eᵣ) of 1256.34, indicating that Cd was the primary enriched pollutant and had a higher ecological risk than other HMs. The mean hazard index (HI) through exposure to eight HMs was 2.95E-01 and 9.74E-01 for adults and children, respectively, with 35.94% of HI values for children exceeding the risk threshold of 1. Moreover, the mean total cancer risks (TCR) were 2.75E-05 and 2.37E-04 for adults and children, respectively, with 75.48% of TCR values for children exceeding the guideline value of 1E-04. In addition, the positive matrix factorization results showed smelting activities, natural sources, agricultural activities and atmospheric deposition were the three sources in soils, with the contribution rate of 48.62%, 22.35%, and 29.03%, respectively. The uncertainty analysis of the PMF indicated that the three-factor solution is reliable. This work will provide scientific reference for the comprehensive prevention of soil HM pollution adjacent to the large smelter.
Показать больше [+] Меньше [-]Effects of environmental concentrations of the fragrance amyl salicylate on the mediterranean mussel Mytilus galloprovincialis Полный текст
2022
Bernardini, I. | Fabrello, J. | Vecchiato, M. | Ferraresso, S. | Babbucci, M. | Peruzza, L. | Rovere, G Dalla | Masiero, L. | Marin, M.G. | Bargelloni, L. | Gambaro, A. | Patarnello, T. | Matozzo, V. | Milan, M.
Amyl salicylate (AS) is a fragrance massively used as a personal care product and following the discharged in wastewaters may end up in the aquatic environment representing a potential threat for the ecosystem and living organisms. AS was recently detected in water of the Venice Lagoon, a vulnerable area continuously subjected to the income of anthropogenic chemicals. The lagoon is a relevant area for mollusc farming, including the Mediterranean mussels (Mytilus galloprovincialis) having an important economic and ecological role. Despite high levels of AS occurred in water of the Lagoon of Venice, no studies investigated the possible consequences of AS exposures on species inhabiting this ecosystem to date. For the first time, we applied a multidisciplinary approach to investigate the potential effects of the fragrance AS on Mediterranean mussels. To reach such a goal, bioaccumulation, cellular, biochemical, and molecular analyses (RNA-seq and microbiota characterization) were measured in mussels treated for 7 and 14 days with different AS Venice lagoon environmental levels (0.1 and 0.5 μg L⁻¹). Despite chemical investigations suggested low AS bioaccumulation capability, cellular and molecular analyses highlighted the disruption of several key cellular processes after the prolonged exposures to the high AS concentration. Among them, potential immunotoxicity and changes in transcriptional regulation of pathways involved in energy metabolism, stress response, apoptosis and cell death regulations have been observed. Conversely, exposure to the low AS concentration demonstrated weak transcriptional changes and transient increased representation of opportunistic pathogens, as Arcobacter genus and Vibrio aestuarianus. Summarizing, this study provides the first overview on the effects of AS on one of the most widely farmed mollusk species.
Показать больше [+] Меньше [-]Risk assessment of mercury through dietary exposure in China Полный текст
2022
Qing, Ying | Li, Yongzhen | Yang, Jiaqi | Li, Shichun | Gu, Kaixin | Bao, Yunxia | Zhan, Yuhao | He, Kai | Wang, Xiaoying | Li, Yanfei
Mercury (Hg) is a widespread heavy metal causing various damages to health, while insufficient studies assessed its exposure risk across China. This study explored concentrations in food items and dietary exposure risks across China by comprehensively analyzing the researches on total Hg (THg) in eight food items and methylmercury (MeHg) in aquatic foods published between 1980 and 2021. According to the included 695 studies, the average THg concentration in all food items was 0.033 mg/kg (ranging from 0.004 to 0.185 mg/kg), with the highest concentration in edible fungi. The average daily dietary THg exposure from all foods was 12.9 μg/day. Plant-based foods accounted for 62.7% of the dietary THg exposure. Cereals and vegetables were the primary source of THg exposure. The MeHg concentration in aquatic foods was 0.08 mg/kg, and the average dietary exposure was 3.8 μg/day. Monte Carlo simulations of the dietary exposure risk assessment of THg and MeHg showed that approximately 6.4 and 7.0% of residents exceeded the health-based guidance value set by the European Food Safety Authority, with higher exposure risk in Southwest and South China. The nationwide target hazard quotient index of THg was greater than 1, suggesting that the non-carcinogenic risk of dietary exposure to THg needed further concern. In summary, this study has a comprehensive understanding of dietary Hg exposure risks across China, which provide a data basis for Hg exposure risk assessment and policy formulation.
Показать больше [+] Меньше [-]Iron-doped hydroxyapatite for the simultaneous remediation of lead-, cadmium- and arsenic-co-contaminated soil Полный текст
2022
Yang, Zhihui | Gong, Hangyuan | He, Fangshu | Repo, Eveliina | Yang, Weichun | Liao, Qi | Zhao, Feiping
Since lead, cadmium and arsenic have completely opposite chemical behaviors, it is very difficult to stabilize all these three heavy metals simultaneously. Herein, a novel iron-doped hydroxyapatite composite (Fe-HAP) was developed via an ultrasonic-assisted microwave hydrothermal method for the simultaneous remediation of lead-, cadmium-, and arsenic-co-contaminated soil in Hunan Province, South China. Using DTPA/sodium bicarbonate extractant to extract bioavailable Pb, Cd and As in soil after Fe-HAP remediation for 60 days, the immobilization efficiencies were 79.77%, 51.3% and 37.5% for Pb, Cd and As, respectively. The soil extractable and exchangeable fractions of Pb, Cd and As decreased significantly. In batch experiments, the adsorption kinetics of Pb, Cd and As on Fe-HAP were well described by pseudo-second-order models, indicating that the adsorption is controlled by chemisorption. In the Langmuir adsorption isotherm, the maximum adsorption capacities of Cd²⁺ and As(V) were 476.2 mg g⁻¹ and 195.69 mg g⁻¹, respectively, while Pb²⁺ fit the Freundlich model better. The XRD, SEM and XPS analyses indicated that Fe-HAP formed stable minerals of Pb₅(PO₄)₃OH, Cd₃(PO₄)₂·4H₂O, Cd(OH)₂ and Fe₃(AsO₄)₂·6H₂O with Pb, Cd and As. Overall, its facile and efficient immobilization performance indicate that Fe-HAP has potential for practical applications in integrative remediation of Pb-, Cd-, and As- co-contaminated soil.
Показать больше [+] Меньше [-]Mapping agricultural use of pesticides to enable research and environmental health actions in Belgium Полный текст
2022
Habran, Sarah | Philippart, Christelle | Jacquemin, Pierre | Remy, Suzanne
Given the many public health and environmental impacts associated with the use of pesticides, comprehensive pesticide application data are a high priority for environmental and health professionals, government agencies, and community groups in Wallonia (Belgium). In that context, geographic information system (GIS) approaches for mapping estimates of agricultural pesticide use were developed in the present study. Data on pesticide application rates and high-resolution annual datasets of the geographic distribution of crops were used to complete this analysis in Wallonia over the period 2015–2017. The method was implemented in Python in order to allow easy update and improvements of maps, or to segment maps by individual pesticides, chemical groups of pesticides (e.g. insecticides, herbicides), etc. Linked databases were created to classify, select, and possibly weight AIs according to specific requests and criteria. The results provide a first map of agricultural pesticide use in Wallonia, which depicts the best picture up to now of their geographic distribution. Maps of fungicides, herbicides, and plant growth regulators showed quite similar spatial patterns as the map of the combination of all pesticides. In contrast, the insecticide map showed a specific pattern related almost exclusively to dwarf-tree orchards in some municipalities in northern Wallonia. This research work is a preliminary result on the spatial characterization of agricultural pesticide use in Wallonia and give a valuable basis for research and environmental health actions in Belgium. Forthcoming developments will focus on exposure characterization to agricultural pesticides using GIS models. Using this information, policymakers will able to detect potential priority zones and take action to check and reduce agricultural pesticide loads in the environment.
Показать больше [+] Меньше [-]Degradation of chloramphenicol by Ti/PbO2–La anodes and alteration in bacterial community and antibiotics resistance genes Полный текст
2022
Dong, Hao | Fu, Yanli | Wang, Pengqi | Jiang, Wenqiang | Gao, Guangfei | Zhang, Xuan
Antibiotics accumulation in the environment has given rise to multi-drug resistant 'superbugs' and antibiotics resistence genes (ARGs). Chloramphenicol (CAP), a kind of widely used antibiotics, was chosen as the model compound to investigate its degradation during electrochemical treatment process. The prepared Ti/PbO₂–La electrodes had a denser surface and a more complete PbO₂ crystal structure than Ti/PbO₂ electrode. The doping of La increased the onset potential and the overpotential, increased the current value of the oxidation peak and the reduction peak, reduced the impedance, and increased the lifetime. The reactions CAP degradation and TOC removal on Ti/PbO₂–La electrode was both primary kinetic reactions. CAP degradation rate increased with current density, and TOC obtained the highest removal at current density of 25 mA cm⁻². The electrolyte concentration had a small effect in the range of 0.050–0.150 mol L⁻¹. The effects under acidic and neutral conditions were better than under alkaline conditions. CAP was mainly directly oxidized at the electrode surface and indirect oxidation also took place via generated ·OH and SO₄·⁻. 15 intermediates and 2 degradation pathways have been postulated. The entry of CAP and CAP intermediates into the environment caused the alteration in bacterial community and ARGs, while complete degradation products had little effect on them. Redundancy analysis showed that intI1 was the dominant factor affecting ARGs, and Actinobacteria and Patescibacteria were the main factors affecting the abundances of ARGs in the microbial community.
Показать больше [+] Меньше [-]Contamination, exposure, and health risk assessment of Hg in Pakistan: A review Полный текст
2022
Rashīd, Sājid | Shah, Izaz Ali | Supe Tulcan, Roberto Xavier | Rashid, Wajid | Sillanpaa, Mika
Mercury is a highly toxic and highly mobile heavy metal. It has been regarded as more toxic than other nonessential and toxic nonradioactive heavy metals. Moreover, it has a high tendency of bioaccumulation and biomagnification in the ecosystem. This study aimed to assess the environmental and health risks related to Hg. Seventy studies related to Hg in environmental media, aquatic biota, and food stuffs across Pakistan were reviewed, and their concentrations were used for ecological and human health risk assessments. High concentrations of Hg were reported in the environment, with maximum concentrations of 72 mg L⁻¹, 144 mg kg⁻¹, 887 mg kg⁻¹, and 49,807 ng m⁻³ in surface water, surface soil, surface sediments, and urban atmosphere, respectively. The possible non-carcinogenic health risk (hazard quotient) of Hg was assessed in soil, water, and fish. High risks were calculated for seafood and vegetable consumption, while low risks were estimated for soils and groundwater ingestion and exposure. Overall, children showed higher risks than adults. Last, the risk quotient analysis (RQ) revealed significant risks for aquatic species. RQs showed that multiple species, especially those with smaller resilience, could face long-term detrimental impacts. High, medium, and low risks were calculated from 66.66, 16.17, and 16.17% of the reported Hg concentrations.
Показать больше [+] Меньше [-]Endophytic fungus Serendipita indica reduces arsenic mobilization from root to fruit in colonized tomato plant Полный текст
2022
Shukla, Jagriti | Mohd, Shayan | Kushwaha, Aparna S. | Narayan, Shiv | Saxena, Prem N. | Bahadur, Lal | Mishra, Aradhana | Shirke, Pramod Arvind | Kumar, Manoj
The accumulation of arsenic in crop plants has become a worldwide concern that affects millions of people. The major source of arsenic in crop plants is irrigation water and soil. In this study, Serendipita indica, an endophytic fungus, was used to investigate the protection against arsenic and its accumulation in the tomato plant. We found that inoculation of S. indica recovers seed germination, plant growth and improves overall plant health under arsenic stress. A hyper-colonization of fungus in the plant root was observed under arsenic stress, which results in reduced oxidative stress via modulation of antioxidative enzymes, glutathione, and proline levels. Furthermore, fungal colonization restricts arsenic mobilization from root to shoot and fruit by accumulating it exclusively in the root. We observed that fungal colonization enhances the arsenic bioaccumulation factor 1.48 times in root and reduces the arsenic translocation factor by 2.96 times from root to shoot and 13.6 times from root to fruit compared to non colonized plants. Further, investigation suggests that S. indica can tolerate arsenic by immobilizing it on the cell wall and accumulating it in the vacuole. This study shows that S. indica may be helpful for the reduction of arsenic accumulation in crops grown in arsenic-contaminated agriculture fields.
Показать больше [+] Меньше [-]Aspergillus niger-mediated release of phosphates from fish bone char reduces Pb phytoavailability in Pb-acid batteries polluted soil, and accumulation in fenugreek Полный текст
2022
Tauqeer, Hafiz Muhammad | Basharat, Zeeshan | Adnan Ramzani, Pia Muhammad | Farhad, Muniba | Lewińska, Karolina | Turan, Veysel | Karczewska, Anna | Khan, Shahbaz Ali | Faran, Gull-e | Iqbal, Muhammad
Soil receiving discharges from Pb-acid batteries dismantling and restoring units (PBS) can have a high concentration of phytoavailable Pb. Reducing Pb phytoavailability in PBS can decline Pb uptake in food crops and minimize the risks to humans and the environment. This pot study aimed to reduce the concentration of phytoavailable Pb in PBS through Aspergillus niger (A. niger)−mediated release of PO₄³⁻ from fish bone [Apatite II (APII)] products. The PBS (Pb = 639 mg kg⁻¹ soil) was amended with APII powder (APII−P), APII char (APII−C), and A. niger inoculum as separate doses, and combining A. niger with APII−P (APII−P + A. niger) and APII−C (APII−C + A. niger). The effects of these treatments on reducing the phytoavailability of Pb in PBS and its uptake in fenugreek were examined. Additionally, enzymatic activities and microbial biomass carbon (MBC) in the PBS and the indices of plant physiology, nutrition, and antioxidant defense machinery were scoped. Results revealed that the APII−C + A. niger treatment was the most efficient one. Compared to the control, it significantly reduced the Pb phytoavailability (DTPA-extractable Pb fraction) in soil and its uptake in plant shoots, roots, and grain, up to 61%, 83%, 74%, and 92%. The grain produced under APII−C + A. niger were safe for human consumption as Pb concentration in grain was 4.01 mg kg⁻¹ DW, remaining within the permissible limit set by WHO/FAO (2007). The APII−C + A. niger treatment also improved soil pH, EC, CEC, MBC, available P content and enzymatic activities, and the fenugreek quality parameters. A. niger played a significant role in solubilizing PO₄³⁻ from APII−C, which reacted with Pb and formed insoluble Pb-phosphates, thereby reducing Pb phytoavailability in PBS and its uptake in plants. This study suggests APII−C + A. niger can remediate Pb-polluted soils via reducing Pb phytoavailability in them.
Показать больше [+] Меньше [-]