Уточнить поиск
Результаты 1251-1260 из 6,473
Heterogeneous reaction of ozone with syringic acid: Uptake of O3 and changes in the composition and optical property of syringic acid
2020
Zhang, Tingting | Yang, Wangjin | Han, Chŏng | Yang, He | Xue, Xiangxin
Syringic acid, which is a typical methoxyphenol emitted from wood combustion, can provide heterogeneous reaction sites for gaseous active components, influencing the concentrations of trace gases and the compositions of syringic acid. The heterogeneous uptake of O₃ on syringic acid was investigated using a flow tube reactor under ambient pressure. The initial uptake coefficient (γᵢ) and the steady-state uptake coefficient (γₛₛ) of O₃ linearly increased with syringic acid mass (0–0.16 μg cm⁻²) and temperature (278–328 K), while they decreased with increasing the O₃ concentration and the O₂ content. The γᵢ was independent of relative humidity (20%–70%), whereas γₛₛ decreased with relative humidity (7%–70%). The compositional changes of syringic acid by the ozonization were analyzed by the Fourier transform infrared spectrometer (FT-IR) and the gas chromatography-mass spectrometry (GC-MS), confirming the generation of 2,6-dimethoxy-1,4-benzoquinone. In addition, compared to that of fresh syringic acid, the mass absorption efficiency of syringic acid aged by O₃ exhibited an increase in the range of 290–320 nm.
Показать больше [+] Меньше [-]Temporal dynamic of anthropogenic fibers in a tropical river-estuarine system
2020
Strady, Emilie | Kieu-Le, Thuy-Chung | Gasperi, Johnny | Tassin, Bruno
Anthropogenic fibers, gathering synthetic fibers, artificial fibers and natural fibers are ubiquitous in the natural environment. Tremendous concentrations of anthropogenic fibers were previously measured in the tropical Saigon River (Vietnam), i.e. a river impacted by textile and apparel industries. In the present study, we want to examine the role of contrasted seasonal variation (e.g., dry and rainy seasons), via the rainfall and monthly water discharges, and of water's physico-chemical conditions on the concentrations of anthropogenic fibers in the surface water. The one year and half monthly survey evidenced that concentrations of anthropogenic fibers varied from 22 to 251 items L⁻¹ and their variations were not related to rainfall, water discharge or abiotic factors. However, their color and length distribution varied monthly suggesting variations in sources and sinks. Based on the 2017 survey, we estimated an annual emission of anthropogenic fibers from the river to the downstream coastal zone of 115–164 × 10¹² items yr⁻¹.
Показать больше [+] Меньше [-]Effects of external Mn2+ activities on OsNRAMP5 expression level and Cd accumulation in indica rice
2020
Cai, Yimin | Wang, Meie | Chen, Baodong | Chen, Weiping | Xu, Weibiao | Xie, Hongwei | Long, Qizhang | Cai, Yaohui
Manganese (Mn) transporter OsNRAMP5 was widely reported to regulate cadmium (Cd) uptake in rice. However, the relationship between OsNRAMP5 expression level and Cd accumulation, impacts of external ion activities on OsNRAMP5 expression level and Cd accumulation are still unclear. Investigations of the relationship between OsNRAMP5 expression level and Cd accumulation in three indica rice genotypes were conducted under various external Mn²⁺ activities ranging from Mn deficiency to toxicity in EGTA-buffered nutrient solution. Results in this work indicated that OsNRAMP5 expression level in roots significantly up-regulated at Mn phytotoxicity compared to that at Mn deficiency, which may stimulate by the increasing uptake of Mn. Our work also demonstrated that root Cd concentration of all the tested rice decreased notably when external Mn²⁺ activity reached the level of toxicity. This may explain by the increasing competition between the excess Mn²⁺ and Cd²⁺ as well as the disorder of element absorption caused by root damage at Mn toxicity. Our work also revealed that the relationship between OsNRAMP5 expression level in roots and Cd accumulation in roots was insignificant for all the tested genotypes. Besides, OsNRAMP5 expression level in roots seemed more related to root Mn accumulation. The fact that function of OsNRAMP5 mainly focuses on Mn uptake, together with the fact that many transporter genes involved in Cd uptake might result in the insignificant correlation between OsNRAMP5 expression level and Cd accumulation in roots. At last, multi-level regulating and processing of the process from gene expression to protein translation might account for the inconsistent relationship between root OsNRAMP5 expression level and Cd accumulation in roots.
Показать больше [+] Меньше [-]Long-term trace element assessment after a mine spill: Pollution persistence and bioaccumulation in the trophic web
2020
Fuentes, Inés | Márquez-Ferrando, Rocío | Pleguezuelos, Juan M. | Sanpera, Carola | Santos, Xavier
Trace elements can be toxic when they cannot be easily removed after entering an ecosystem, so a long-term assessment is fundamental to guide ecosystem restoration after catastrophic pollution. In 1998, a pyrite mining accident in Aznalcóllar (south-western Spain) spilled toxic waste over a large area of the Guadiamar river basin, where, after restoration tasks, the Guadiamar Green Corridor was established. Eight years after the mine accident (2005–2006), the ground-dwelling insectivorous lizard Psammodromus algirus registered high trace-element levels within the study area compared to specimens from a nearby unpolluted control site. In 2017, 20 years after the accident, we repeated the sampling for this lizard species and also quantified trace elements in vegetation as well as in arthropod samples in order to identify remnant trace-element accumulation with the aim of assessing the transfer of these elements through the trophic web. We found remnant trace-element contamination in organisms of the polluted site compared to those from the unpolluted site. All trace-element concentrations were higher in arthropods than in plants, suggesting these compounds bioaccumulate through the trophic web. Lizards from the polluted areas had higher As, Cd, and Hg concentrations than did individuals from the unpolluted area. Lizard abundance between sampling periods (2005–06 and 2017) did not vary in unpolluted transects but strongly declined at polluted ones. By contrast, the Normalized Difference Vegetation Index indicated that in the study period, the vegetation was similar at the two sampling sites. These results suggest that, 20 years after the accident, the trace-element pollution could be the cause of a severe demographic decline of the lizard in the polluted area.
Показать больше [+] Меньше [-]Perfluorooctane sulfonate enhances mRNA expression of PPARγ and ap2 in human mesenchymal stem cells monitored by long-retained intracellular nanosensor
2020
Gao, Yu | Guo, Xixi | Wang, Siyu | Chen, Fubin | Ren, Xiaomin | Xiao, Huaxin | Wang, Lianhui
Perfluorooctane sulfonate (PFOS) has been widely used as a surface coating for household products. It still exists in living environments despite being restricted, due to its bioaccumulation and long half-life. Studies have shown that PFOS has the ability to induce adipogenic differentiation of human cells. Human mesenchymal stem cells (hMSCs) distributed within the adipose tissue might be a potential target of accumulated PFOS. However, traditional end-point toxicity assays failed to examine the subtle changes of cellular function exposed to low-dose persistent organic pollutants in real time. In the present work, highly sensitive and long-retained (more than 30 days) fluorescence based polymeric nanosensors were developed and employed for real-time assessment of cellular functions. hMSCs were engineered with sensor molecules encapsulated poly (lactic-co-glycolic acid) (PLGA) particles. Once internalized by hMSCs, PLGA particles continuously release and replenish sensor molecules to cytoplasm, resulting in prolonged fluorescence signal against photo bleaching and dilution by exocytosis. With this method, the dynamic changes of viability, ROS induction, and adipogenic differentiation related mRNA expression of hMSCs were monitored. PFOS with the concentration as low as 0.1 μM can induce cellular ROS and enhance the PPARγ and ap2 mRNA expression, suggesting the effect on promoting adipogenic differentiation of hMSCs.
Показать больше [+] Меньше [-]Monobutyl phthalate (MBP) induces energy metabolism disturbances in the gills of adult zebrafish (Danio rerio)
2020
Tao, Yue | Yang, Yang | Jiao, Yaqi | Wu, Song | Zhu, Guangxue | Akindolie, Modupe Sarah | Zhu, Tong | Qu, Jianhua | Wang, Lei | Zhang, Ying
Monobutyl phthalate (MBP) is a primary metabolite of an environmental endocrine disruptor dibutyl phthalate (DBP), which poses a potential threat to living organisms. In this research, the acute toxicity of MBP on energy metabolism in zebrafish gills was studied. Transmission electron microscopy (TEM) results show that 10 mg L⁻¹ MBP can induce mitochondrial structural damage of chloride cells after 96 h of continuous exposure. The activity of ion ATPase and the expression level of oxidative phosphorylation-related genes suggest that MBP interferes with ATP synthesis and ion transport. Further leading to a decrease in mitochondrial membrane potential (MMP) and cell viability, thereby mediating early-stage cell apoptosis. Through a comprehensive analysis of principal component analysis (PCA) and integrated biomarker response (IBR) scores, atp5a1, a subunit of mitochondrial ATP synthase, is mainly inhibited by MBP, followed by genes encoding ion ATPase (atp1b2 and atp2b1). Importantly, MBP inhibits aerobic metabolism by inhibiting the key enzyme malate dehydrogenase (MDH) in the TCA cycle, forcing zebrafish to maintain ATP supply by enhancing anaerobic metabolism.
Показать больше [+] Меньше [-]Responsiveness change of biochemistry and micro-ecology in alkaline soil under PAHs contamination with or without heavy metal interaction
2020
Wang, Can | Luo, Yao | Tan, Hang | Liu, Huakang | Xu, Fei | Xu, Heng
Co-presence of organic pollutants and heavy metals in soil is causing increasing concerns, but the lack of knowledge of relation between soil ecology and pollutant fate is limiting the developing of specific control strategy. This study investigated soil change under pyrene stress and its interaction with cadmium (Cd). Soil physicochemical properties were not seriously influenced. However, pollutants’ presence easily varied soil microbial activity, quantity, and diversity. Under high-level pyrene, Cd presence contributed to soil indigenous microorganisms’ adaption and soil microbial community structure stability. Soils with both pyrene and Cd presented 7.11–12.0% higher pyrene degradation compared with single pyrene treatment. High-throughput sequencing analysis indicated the proportion of Mycobacterium sp., a commonly known PAHs degrader, increased to 25.2–48.5% in treatments from 0.52% in control. This phenomenon was consistent with the increase of PAHs probable degraders (the ratio increased to 2.86–6.57% from 0.24% in control). Higher Cd bioavailability was also observed in soils with both pollutants than that with Cd alone. And Cd existence caused the elevation of Cd resistant bacterium Limnobacter sp. (increased to 12.2% in CdCK from 2.06% in control). Functional gene prediction also indicated that abundance of genes related to nutrient metabolism decreased dramatically with pollutants, while the abundances of energy metabolism, lipid metabolism, secondary metabolites biosynthesis-related genes increased (especially for aromatic compound degradation related genes). These results indicated the mutual effect and internal-interaction existed between pollutants and soils resulted in pollutants’ fate and soil microbial changes, providing further information regarding pollutants dissipation and transformation under soil microbial response.
Показать больше [+] Меньше [-]Nitrous oxide emissions in response to straw incorporation is regulated by historical fertilization
2020
Wu, Lei | Hu, Ronggui | Tang, Shuirong | Shaaban, Muhammad | Zhang, Wenju | Shen, Huaping | Xu, Minggang
The incorporation of crop straw with fertilization is beneficial for soil carbon sequestration and cropland fertility improvement. Yet, relatively little is known about how fertilization regulates the emissions of the greenhouse gas nitrous oxide (N₂O) in response to straw incorporation, particularly in soils subjected to long-term fertilization regimes. Herein, the arable soil subjected to a 31-year history of five inorganic or organic fertilizer regimes (unfertilized; chemical fertilizer application, NPK; 200% NPK application, 2 × NPK; manure application, M; NPK plus manure application, NPKM) was incubated with and without rice straw to evaluate how historical fertilization influences the impact of straw addition on N₂O emissions. The results showed that compared to the unfertilized treatment, historical fertilization strongly increased N₂O emissions by 0.48- to 34-fold, resulting from increased contents of hot water-extracted organic carbon (HWEOC), NO₃⁻, and available phosphorus (Olsen-P). Straw addition had little impact on N₂O emission from the unfertilized and NPK treatments, primarily due to Olsen-P limitation. In contrast, straw addition increased N₂O emissions by 102–316% from the 2 × NPK, M, and NPKM treatments as compared to the corresponding straw-unamended treatments. These results indicated that N₂O emissions in response to straw addition were largely regulated by historical fertilization. The N₂O emissions were closely associated with the depletion of NO₃⁻ and decoupled from change in NH₄⁺ content, suggesting that NO₃⁻ was the main substrate for N₂O production upon straw addition. The stoichiometric ratios of HWEOC to mineral N and mineral N to Olsen-P were key factors affecting N₂O emissions, underscoring the importance of resource stoichiometry in regulating N₂O emissions. In conclusion, historical fertilization largely regulated the impacts of crop straw incorporation on N₂O emissions via shifts in NO₃⁻ depletion and the stoichiometry of HWEOC, mineral N, and Olsen-P.
Показать больше [+] Меньше [-]Metal accumulation in the acrocarp moss Atrichum undulatum under controlled conditions
2020
Sabovljević, Marko S. | Weidinger, Marieluise | Sabovljević, Aneta D. | Stanković, Jelena | Adlassnig, Wolfram | Lang, Ingeborg
Mosses are frequently used to monitor atmospheric metal contamination but few studies on metal adsorption under controlled conditions are available. Here, the accumulation of the heavy metals copper and zinc was studied in the acrocarp moss Atrichum undulatum. An in vitro culture of A. undulatum was established and the same line, size and equally old remets were exposed to six different treatments representing various metal exposure times and washing scenarios as rain simulation. The metal treatments were done in copper and zinc salts (Cu-acetate, CuSO4, ZnSO4 and ZnCl2, respectively). Energy-Dispersive X-ray microanalysis (EDX) was employed to detect bound heavy metals on the moss plantlets. Element distribution in stems and leaves was measured separately. The aqueous solution of metal salts facilitated an adsorption of both elements in the moss tissue as compared to solid medium. Furthermore, A. undulatum can tolerate pollution of zinc and copper in a distinctive extent; our data point towards a higher zinc tolerance whereas copper is rather harmful. However, semi-quantitatively, less zinc was detected within the moss tissue compared to copper. Interestingly, a strong positive correlation between the accumulation of copper/zinc and iron, and a strong negative correlation between copper/zinc and magnesium, respectively, was documented.
Показать больше [+] Меньше [-]Short-term exposure to norfloxacin induces oxidative stress, neurotoxicity and microbiota alteration in juvenile large yellow croaker Pseudosciaena crocea
2020
Wang, Xinghuo | Hu, Menghong | Gu, Huaxin | Zhang, Libin | Shang, Yueyong | Wang, Ting | Wang, Tingyue | Zeng, Jiangning | Ma, Lukuo | Huang, Wei | Wang, Youji
In recent years, antibiotics have been widely detected in coastal waters of China, which raising concerns for coastal biodiversity and aquaculture. This study evaluated the effects of short-term exposure of norfloxacin (NOR) on oxidative stress and intestinal health of the large yellow croaker Pseudosciaena crocea. Juvenile fish were exposed to four concentrations of NOR (0.1, 10, 100 and 1000 μg/L) for 14 days. The results showed that NOR inhibited growth and threatened the survival of juveniles. According to the changes of intestinal microbiota, we found that NOR led to a significant decrease in intestinal microbiota diversity, with the decreased relative abundance of Proteobacteria, but the increased Tenericutes. From the perspective of microbial function, NOR inhibited metabolism, cellular defence mechanism and information transduction process. In terms of biochemical indicators, NOR caused an increase in malondialdehyde (MDA) level and inhibited superoxide dismutase (SOD) and acetyl cholinesterase (AChE) activities. Catalase (CAT) activity was activated at low concentration but significantly inhibited at high concentration of NOR. Moreover, there was a high correlation between change in biochemical indicators and change in the microbial community. Overall, environmentally relevant concentrations (0.1 μg/L) and high concentrations (10, 100 and 1000 μg/L) of NOR have negative effects on the defence function and intestinal health of large yellow croaker juveniles.
Показать больше [+] Меньше [-]