Уточнить поиск
Результаты 1921-1930 из 6,548
Struvite crystallization induced the discrepant transports of antibiotics and antibiotic resistance genes in phosphorus recovery from swine wastewater Полный текст
2020
Cai, Jiasheng | Ye, Zhi-Long | Ye, Chengsong | Ye, Xin | Chen, Shaohua
Struvite (MgNH₄PO₃·6H₂O) crystallization is one of important methods of phosphorus recovery from wastewater. As to livestock wastewater, the high-strength occurrence of antibiotics and antibiotic resistance genes might induce struvite recovery to spread antibiotic resistance to the environment. However, limited information has been reported on the simultaneous transport of antibiotics and ARGs in struvite recovery. In the present study, tetracyclines (TCs) and tetracyclines antibiotic resistance genes (ARGs) were selected as the targeted pollutants, and their discrepant residues in struvite recovery from swine wastewater were investigated. TCs and ARGs were obviously detected, with their contents of 4.88–79.5 mg/kg and 6.99 × 10⁷–2.14 × 10¹¹ copies/g, notably higher than those of TCs 0.550–1.94 mg/kg and ARGs 3.98 × 10⁴–5.66 × 10⁷ copies/g obtained from synthetic wastewater. The correlational relationship revealed that predominant factors affecting TCs and ARGs transports were different. Results from network analyses indicated that among the total edges, the negative correlations between TCs and ARGs predominately occupied 18.0%. The redundancy analysis revealed that mineral components in the recovered products, including struvite, K-struvite and amorphous calcium phosphate, coupling with organic contents, displayed insignificant roles on TCs residues, where heavy metals exerted positive and remarkable functions to boost TCs migration. Unexpectedly, mineral components and heavy metals did not displayed significant promotion on ARGs transport as a whole.
Показать больше [+] Меньше [-]Role of poly (ADP-ribose) polymerase-1 in cadmium-induced cellular DNA damage and cell cycle arrest in rat renal tubular epithelial cell line NRK-52E Полный текст
2020
Luo, Tongwang | Yu, Qi | Zou, Hui | Zhao, Hongyan | Gu, Jianhong | Yuan, Yan | Zhu, Jiaqiao | Bian, Jianchun | Liu, Zongping
With the development of modern industry, the problem of cadmium (Cd) pollution cannot be ignored and its toxicity has caused great personal injury to humans. Poly (ADP-ribose) polymerase 1 (PARP-1) protein is a research hotspot in recent years, the research we have published shows that 5 μM of Cd-treated NRK-52E cells activated PARP-1, but the specific effects of PARP-1 on DNA damage and cell cycle is unclear. Therefore, the purpose of this study is to reveal the effect of Cd on DNA damage and cell cycle arrest in NRK-52E cells, in addition, to investigate the role of PARP-1 in mediating this effect. Western blotting, comet assay, QRT-PCR, immunofluorescence, and co-immunoprecipitation were used to detect DNA damage and cell cycle-associated protein expression. Flow cytometry was used to assess cell cycle distribution and the apoptosis rates. Results showed that after the increase in treatment time and Cd concentration, the degree of DNA damage was significantly increased, and a transition from G0/G1 to S phase arrest was observed. In addition, inhibition of PARP-1 expression exacerbated cell damage and cell cycle arrest when DNA damage was low, but attenuated cell damage and even cell cycle arrest when DNA damage was severe. These findings in this study indicate that Cd causes DNA damage in NRK-52E cells, leading to cell cycle arrest at different phases depending on the degree of DNA damage. Moreover, PARP-1 plays an important role in mediating this effect, when DNA damage is low, it functions in DNA repair, however, when DNA damage is severe, it aggravates cell damage and induces cell death.
Показать больше [+] Меньше [-]Degradation of 2, 2′, 4, 4′-Tetrabrominated diphenyl ether (BDE-47) via the Fenton reaction driven by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 Полный текст
2020
Peng, Zhaofeng | Shi, Meimei | Xia, Kemin | Dong, Yiran | Shi, Liang
A microbially facilitated approach was developed to degrade 2, 2′, 4, 4′-tetrabrominated diphenyl ether (BDE-47). This approach consisted of biological production of Fe(II) and H₂O₂ by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 during the repetitive anoxic/oxic cycles and abiotic production of hydroxyl radical (HO●) with the biologically produced Fe(II) and H₂O₂ via Fenton reaction. Under the condition tested, BDE-47 did not inhibit the growth of S. oneidensis MR-1. Water soluble Fe(III)-citrate and the solid minerals ferrihydrite [Fe(III)₂O₃•0.5H₂O] and goethite [Fe(III)OOH] were tested in this study. Under anoxic condition, the amounts of Fe(II) produced by S. oneidensis MR-1 varied among the Fe(III)s tested, which decreased in the order of Fe(III)-citrate > ferrihydrite > goethite. Under subsequent oxic condition, H₂O₂ was produced via O₂ reduction by S. oneidensis MR-1. The amounts of H₂O₂ detected also varied, which decreased in the order of the reactions with Fe(III)-citrate > goethite > ferrihydrite. S. oneidensis MR-1 maintained its ability to produce Fe(II) and H₂O₂ for up to seven anoxic/oxic cycles. At each end of anoxic/oxic cycle, HO● was detected. The amount of HO● produced decreased in the order of the reactions with ferrihydrite > goethite > Fe(III)-citrate, which was opposite to that of H₂O₂ detected. Compared to the controls without HO●, the amounts of BDE-47 in the reactions with HO● decreased. The more HO● in the reaction, the less amount of BDE-47 detected. Furthermore, no BDE-47 degradation was observed when HO● was scavenged or ferrihydrite was either omitted or replaced by nitrate. Finally, identification of degradation products, such as hydroxylated BDE-47 and trisBDE, dibromophenol and monobromophenol, suggested that OH-addition and Br-substitution by HO● were the main mechanisms for degrading BDE-47. Collectively, all these results demonstrated for the first time that the Fenton reaction driven by S. oneidensis MR-1 degraded BDE-47 effectively.
Показать больше [+] Меньше [-]Inorganic carbon utilization of tropical calcifying macroalgae and the impacts of intensive mariculture-derived coastal acidification on the physiological performance of the rhodolith Sporolithon sp Полный текст
2020
Narvarte, Bienson Ceasar V. | Nelson, W. A. (Wendy A.) | Roleda, Michael Y.
Inorganic carbon utilization of tropical calcifying macroalgae and the impacts of intensive mariculture-derived coastal acidification on the physiological performance of the rhodolith Sporolithon sp Полный текст
2020
Narvarte, Bienson Ceasar V. | Nelson, W. A. (Wendy A.) | Roleda, Michael Y.
Fish farming in coastal areas has become an important source of food to support the world’s increasing population. However, intensive and unregulated mariculture activities have contributed to changing seawater carbonate chemistry through the production of high levels of respiratory CO₂. This additional CO₂, i.e. in addition to atmospheric inputs, intensifies the effects of global ocean acidification resulting in localized extreme low pH levels. Marine calcifying macroalgae are susceptible to such changes due to their CaCO₃ skeleton. Their physiological response to CO₂-driven acidification is dependent on their carbon physiology. In this study, we used the pH drift experiment to determine the capability of 9 calcifying macroalgae to use one or more inorganic carbon (Cᵢ) species. From the 9 species, we selected the rhodolith Sporolithon sp. as a model organism to investigate the long-term effects of extreme low pH on the physiology and biochemistry of calcifying macroalgae. Samples were incubated under two pH treatments (pH 7.9 = ambient and pH 7.5 = extreme acidification) in a temperature-controlled (26 ± 0.02 °C) room provided with saturating light intensity (98.3 ± 2.50 μmol photons m⁻² s⁻¹). After the experimental treatment period (40 d), growth rate, calcification rate, nutrient uptake rate, organic content, skeletal CO₃⁻², pigments, and tissue C, N and P of Sporolithon samples were compared. The pH drift experiment revealed species-specific Cᵢ use mechanisms, even between congenerics, among tropical calcifying macroalgae. Furthermore, long-term extreme low pH significantly reduced the growth rate, calcification rate and skeletal CO₃⁻² content by 79%, 66% and 18%, respectively. On the other hand, nutrient uptake rates, organic matter, pigments and tissue C, N and P were not affected by the low pH treatments. Our results suggest that the rhodolith Sporolithon sp. is susceptible to the negative effects of extreme low pH resulting from intensive mariculture-driven coastal acidification.
Показать больше [+] Меньше [-]Seawater carbonate chemistry and physiological performance of the rhodolith Sporolithon sp. Полный текст
2020
Narvarte, Bienson Ceasar V | Nelson, Wendy A | Roleda, Michael Y
Fish farming in coastal areas has become an important source of food to support the world's increasing population. However, intensive and unregulated mariculture activities have contributed to changing seawater carbonate chemistry through the production of high levels of respiratory CO2. This additional CO2, i.e. in addition to atmospheric inputs, intensifies the effects of global ocean acidification resulting in localized extreme low pH levels. Marine calcifying macroalgae are susceptible to such changes due to their CaCO3 skeleton. Their physiological response to CO2-driven acidification is dependent on their carbon physiology. In this study, we used the pH drift experiment to determine the capability of 9 calcifying macroalgae to use one or more inorganic carbon (Ci) species. From the 9 species, we selected the rhodolith Sporolithon sp. as a model organism to investigate the long-term effects of extreme low pH on the physiology and biochemistry of calcifying macroalgae. Samples were incubated under two pH treatments (pH 7.9 = ambient and pH 7.5 = extreme acidification) in a temperature-controlled (26 ± 0.02 °C) room provided with saturating light intensity (98.3 ± 2.50 μmol photons/m**2/s). After the experimental treatment period (40 d), growth rate, calcification rate, nutrient uptake rate, organic content, skeletal CO3-2, pigments, and tissue C, N and P of Sporolithon samples were compared. The pH drift experiment revealed species-specific Ci use mechanisms, even between congenerics, among tropical calcifying macroalgae. Furthermore, long-term extreme low pH significantly reduced the growth rate, calcification rate and skeletal CO3-2 content by 79%, 66% and 18%, respectively. On the other hand, nutrient uptake rates, organic matter, pigments and tissue C, N and P were not affected by the low pH treatments. Our results suggest that the rhodolith Sporolithon sp. is susceptible to the negative effects of extreme low pH resulting from intensive mariculture-driven coastal acidification.
Показать больше [+] Меньше [-]Trace elements in sediments and fish from Atrato River: an ecosystem with legal rights impacted by gold mining at the Colombian Pacific Полный текст
2020
Palacios-Torres, Yuber | de la Rosa, Jesus D. | Olivero-Verbel, Jesus
The Atrato watershed is a rainforest that supports exceptional wildlife species and is considered one of the most biodiversity-rich areas on the planet, currently threatened by massive gold mining. Aimed to protect this natural resource, the Constitutional Court of Colombia declared the river subject to rights. The objective of this study was to quantify trace elements in sediments and fish from Atrato watershed, assessing their environmental and human health risk. Forty-two trace elements were quantified using ICP-MS. Thirty-one elements increased their concentration downstream the river. Concentration Factors (CF) suggest sediments were moderately polluted by Cr, Cu, Cd, and strongly polluted by As. Most stations had Cr (98%) and Ni (78%) concentrations greater than the Probable Effect Concentration (PEC) criteria. Together, toxic elements generate a Pollution Load Index (PLI) and a Potential Ecological Risk Index (RI) that categorized 54% of the sediments as polluted, and 90% as moderate polluted, respectively. Hemiancistrus wilsoni, a low trophic guild fish species, had the greater average levels for Ni, Cu, As and Cd, among other elements. Rubidium and Cs showed a positive correlation with fish trophic level, suggesting these two metals biomagnify in the food chain. The Hazard Quotient (HQ) for As was greater than 1 for several species, indicating a potential risk to human health. Collectively, data suggest gold mining carried out in this biodiversity hotspot releases toxic elements that have abrogated sediment quality in Atrato River, and their incorporation in the trophic chain constitutes a large threat on environmental and human health due to fish consumption. Urgent legal and civil actions should be implemented to halt massive mining-driven deforestation to enforce Atrato River rights.
Показать больше [+] Меньше [-]Multi-year atmospheric concentrations of per- and polyfluoroalkyl substances (PFASs) at a background site in central Europe Полный текст
2020
Paragot, Nils | Bečanová, Jitka | Karásková, Pavlína | Prokeš, Roman | Klánová, Jana | Lammel, Gerhard | Degrendele, Céline
A total of 74 high volume air samples were collected at a background site in Czech Republic from 2012 to 2014 in which the concentrations of 20 per- and polyfluoroalkyl substances (PFASs) were investigated. The total concentrations (gas + particle phase) ranged from 0.03 to 2.08 pg m⁻³ (average 0.52 pg m⁻³) for the sum of perfluoroalkyl carboxylic acids (∑PFCAs), from 0.02 to 0.85 pg m⁻³ (average 0.28 pg m⁻³) for the sum of perfluoroalkyl sulfonates (ΣPFSAs) and from below detection to 0.18 pg m⁻³ (average 0.05 pg m⁻³) for the sum of perfluorooctane sulfonamides and sulfonamidoethanols (ΣFOSA/Es). The gas phase concentrations of most PFASs were not controlled by temperature dependent sources but rather by long-range atmospheric transport. Air mass backward trajectory analysis showed that the highest concentrations of PFASs were mainly originating from continental areas. The average particle fractions (θ) of ΣPFCAs (θ = 0.74 ± 0.26) and ΣPFSAs (θ = 0.78 ± 0.22) were higher compared to ΣFOSA/Es (θ = 0.31 ± 0.35). However, they may be subject to sampling artefacts. This is the first study ever reporting PFASs concentrations in air samples collected over consecutive years. Significant decreases in 2012–2014 for PFOA, MeFOSE, EtFOSE and ∑PFCAs were observed with apparent half-lives of 1.01, 0.86, 0.92 and 1.94 years, respectively.
Показать больше [+] Меньше [-]Sampling microfibres at the sea surface: The effects of mesh size, sample volume and water depth Полный текст
2020
Ryan, Peter G. | Suaria, Giuseppe | Perold, Vonica | Pierucci, Andrea | Bornman, Thomas G. | Aliani, Stefano
Microfibres are one of the most ubiquitous particulate pollutants, occurring in all environmental compartments. They are often assumed to be microplastics, but include natural as well as synthetic textile fibres and are perhaps best treated as a separate class of pollutants given the challenges they pose in terms of identification and contamination. Microfibres have been largely ignored by traditional methods used to sample floating microplastics at sea, which use 300–500 μm mesh nets that are too coarse to sample most textile fibres. There is thus a need for a consistent set of methods for sampling microfibres in seawater. We processed bulk water samples through 0.7–63 μm filters to collect microfibres in three ocean basins. Fibre density increased as mesh size decreased: 20 μm mesh sampled 41% more fibres than 63 μm, and 0.7 μm filters sampled 44% more fibres than 25 μm mesh, but mesh size (20–63 μm) had little effect on the size of fibres retained. Fibre density decreased with sample volume when processed through larger mesh filters, presumably because more fibres were flushed through the filters. Microfibres averaged 2.5 times more abundant at the sea surface than in water sampled 5 m sub-surface. However, the data were noisy; counts of replicate 10-L samples had low repeatability (0.15–0.36; CV = 56%), suggesting that single samples provide only a rough estimate of microfibre abundance. We propose that sampling for microfibres should use a combination of <1 μm and 20–25 μm filters and process multiple samples to offset high within-site variability in microfibre densities.
Показать больше [+] Меньше [-]Biochar amendment mitigates the health risks of dietary methylmercury exposure from rice consumption in mercury-contaminated areas Полный текст
2020
Wang, Yongjie | Sun, Yafei | He, Tianrong | Deng, Hong | Wang, Zhigang | Wang, Jiangtao | Zheng, Xiangmin | Zhou, Limin | Zhong, Huan
The accumulation of methylmercury (MeHg) in rice is an important MeHg exposure pathway in humans in several mercury (Hg)-contaminated areas. In this study, the effects of low-dose biochar (BC) amendment (0.3%, w/w) on MeHg mobility/phytoavailability in different Hg-contaminated paddy soils, MeHg accumulation in rice plants and the health risks associated with MeHg-laden rice consumption were investigated. Soils amended with different doses of bamboo-derived BC (0.3, 0.5, and 1%, w/w) were incubated under anoxic conditions in microcosm experiments. In addition, pot experiments were conducted involving rice cultivation with a low BC application rate (0.3%, w/w). We observed that (1) the fraction of extractable MeHg in soils decreased with BC addition in both the microcosm and pot experiments; (2) MeHg concentrations in the rice grains (brown rice) significantly decreased by 56–88% in response to BC amendment, which may be attributed mainly to decreases in MeHg mobility/phytoavailability in the soil; and (3) the hazard quotient (HQ) values for adults and children and fetal intelligence quotient (IQ) decrements associated with MeHg-laden rice consumption were significantly alleviated under BC amendment. Taken together, our findings suggest that a low dose of BC (0.3%, w/w) could have great potential for mitigating the health risks of dietary MeHg exposure from the consumption of rice grown in mercury (Hg)-contaminated areas.
Показать больше [+] Меньше [-]Confrontation assays and mycotoxin treatment reveal antagonistic activities of Trichoderma and the fate of Fusarium mycotoxins in microbial interaction Полный текст
2020
Tian, Ye | Yu, Dianzhen | Liu, Na | Tang, Yan | Yan, Zheng | Wu, Aibo
Mycotoxins are toxic fungal metabolites, contaminating cereal grains in field or during processing and storage periods. These environmental contaminants pose great threats to humans and animals’ health due to their toxic effects. Type A trichothecenes, fumonisins and fusaric acid (FA) are commonly detected mycotoxins produced by various Fusarium species. Trichoderma spp. are promising antagonists in agriculture for their activities against plant pathogens, and also regarded as potential candidates for bioremediation of environmental contaminants. Managing toxigenic fungi by antagonistic Trichoderma is regarded as a sustainable and eco-friendly strategy for mycotoxin control. However, the metabolic activities of Trichoderma on natural occurring mycotoxins were less investigated. Our current work comprehensively explored the activities of Trichoderma against type A trichothecenes, fumonisins and FA producing Fusarium species via co-culture competition and indirect volatile assays. Furthermore, we investigated metabolism of type A trichothecenes and FA in Trichoderma isolates. Results indicated that Trichoderma were capable of bio-transforming T-2 toxin, HT-2 toxin, diacetoxyscirpenol and neosolaniol into their glycosylated forms and one Trichoderma strain could bio transform FA into low toxic fusarinol. These findings proved that Trichoderma isolates could manage toxigenic Fusarium via direct competition and volatile-mediated indirect inhibition. In addition, these antagonists possess defensive systems against mycotoxins for self-protection, which enriches our understanding on the interaction mechanism of Trichoderma spp. on toxigenic fungus.
Показать больше [+] Меньше [-]Isotherm nonlinearity and nonlinear partitioning of organic compounds into resin XAD-7: Insight from displacement experiments Полный текст
2020
Zhou, Chenkai | Lin, Daohui | Yang, Kun
Nonlinear sorption and isotherm nonlinearity of organic compounds by widely used porous resins such as XAD-7 are commonly interpreted as adsorption due to their large surface area. However, through displacement experiments using saturated 4-nitrophenol as the displacer, we observed that the nonlinear sorption and isotherm nonlinearity of selected organic compounds (i.e., naphthalene, nitrobenzenes, phenols and anilines) by XAD-7 was captured by a nonlinear partition mechanism rather than the adsorption mechanism. Nonlinear sorption of organic compounds by XAD-7 includes a nonlinear/displaced fraction and a linear/non-displaced fraction. A dual-mode (DM) model, including a nonlinear Dubinin-Ashtakhov (DA) model component and a linear model component, was developed to describe the nonlinear/displaced fraction and the linear/non-displaced fraction, respectively. The capacity of these two fractions are dependent on their solubility in water or octanol with positively linear relationships but not their molecular size, supporting the nonlinear partitioning mechanism. Besides van-der-waals force, hydrogen-bonding is primarily responsible for the nonlinear partitioning of phenols and anilines into XAD-7, while π-π interaction is responsible for the nonlinear partitioning of naphthalene and nitrobenzenes. The explored nonlinear partitioning mechanism for XAD-7 implies that the nonlinear sorption of organic compounds by porous resins should be recognized for their recovery and applications as sorbents.
Показать больше [+] Меньше [-]