Уточнить поиск
Результаты 1-4 из 4
Quality improvement of processed food using superheated steam and hot water spray
2010
Sotome, I, National Food Research Inst., Tsukuba, Ibaraki (Japan) | Isobe, S.
Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce Полный текст
2015
Ma, Ruonan | Wang, Guomin | Tian, Ying | Wang, Kaile | Zhang, Jue | Fang, Jing
Non-thermal plasma has been widely considered to be an effective method for decontamination of foods. Recently, numerous studies report that plasma-activated water (PAW) also has outstanding antibacterial ability. This study presents the first report on the potential of PAW for the inactivation of Staphylococcus aureus (S. aureus) inoculated on strawberries. PAW treatments achieved a reduction of S. aureus ranging from 1.6 to 2.3 log at day-0 storage, while 1.7 to 3.4 log at day-4 storage. The inactivation efficiency depended on the plasma-activated time for PAW generation and PAW-treated time of strawberries inoculated with S. aureus. LIVE/DEAD staining and scanning electron microscopy results confirm that PAW could damage the bacterial cell wall. Moreover, optical emission spectra and oxidation reduction potential results demonstrate the inactivation is mainly attributed to oxidative stress induced by reactive oxygen species in PAW. In addition, no significant change was found in color, firmness and pH of the PAW treated strawberries. Thus, PAW can be a promising alternative to traditional sanitizers applied in the fresh produce industry.
Показать больше [+] Меньше [-]Relationship between firming and water mobility in starch-based food systems during storage
1996
Ruan, R. | Almaer, S. | Huang, V.T. | Perkins, P. | Chen, P. | Fulcher, R.G.
Magnetic resonance imaging (MRI) and pulsed nuclear magnetic resonance techniques were used to study the water mobility in sweet rolls during storage. Different fractions of water with distinguishable molecular mobility were identified. MRI provided information on the spatial distribution of water content and of water mobility. During storage, moisture migrated from the crumb to the crust, which was associated with the firming of the crumb. A spatial redistribution of water mobility within the sample was also observed. As storage time increased, the mobility of the less mobile water fraction decreased; whereas the mobility of the more mobile water fraction increased upon staling, suggesting a redistribution of water mobility within the water molecules in the samples. A relationship between water mobility and staling was discussed.
Показать больше [+] Меньше [-]Electrospinning of zein-ethyl cellulose hybrid nanofibers with improved water resistance for food preservation Полный текст
2020
Niu, Ben | Zhan, Li | Shao, Ping | Xiang, Ning | Sun, Peilong | Chen, Hangjun | Gao, Haiyan
Zein electrospun nanofibers have poor water resistance, which restricts its applications in food preservation. To improve the water resistance of nanofibers, zein/ethyl cellulose (EC) hybrid nanofibers were prepared at different ratios. Besides, we also encapsulated cinnamon essential oil (CEO) into electrospun fibers for Agaricus bisporus preservation. As the weight ratio of EC increased from 0% (ZE-10) to 100% (ZE-01), the viscosity of electrospinning solutions gradually increased from 80.33 ± 19.23 mPa·s to 756.78 ± 22.48 mPa·s, resulting in sufficient chain entanglement for the preparation of uniform fibers. The average diameters of ZE-01, ZE-12, ZE-11, ZE-21, and ZE-10 nanofibers were 326 ± 53 nm, 267 ± 31 nm, 237 ± 51 nm, 292 ± 45 nm, and 362 ± 70 nm, respectively. The hydrogen bonds between the hydroxyl groups of ethyl cellulose and the amino groups of zein decreased the amount of free hydrophilic group, thus improving water resistance of nanofibers. Food packaging potential was evaluated using Agaricus bisporus. The zein/EC nanofibers loaded CEO significantly decreased weight loss and maintained the firmness of the Agaricus bisporus, and improved the quality of the Agaricus bisporus during storage.
Показать больше [+] Меньше [-]