Уточнить поиск
Результаты 1-8 из 8
[Water purification in food industry] Полный текст
2007
Lovkis, Z.V.,National Academy of Sciences, Minsk (Belarus). Scientific and Practical Center for Foodstuffs | Pranovich, M.V.,Belarus State Technological Univ., Minsk (Belarus)
This article discusses the basic ways of water-preparation in food industry. Water-preparation plan with elements of disinfecting for production of drinking water and drinks is given. The analysis shows that water should meet definite microbiological requirements. In order to reduce its fatal influence on the health of people the clearing and preparation of water are necessary. Development of techniques and means of clearing without chemical technologies, including ozone treatment technologies, allows one to lower and to get rid of application of chemical compounds and reagents. At the moment the ozone treatment water technologies with consequent treatment on filling filters are the most rational. Ozone is the strong oxidant and disinfects water faster than chlorine in some times. With activated carbon use both the flavouring qualities and smell become better. Technology of mutual ozone processing with absorption is the most perspective for water purification and disinfection, possessives a high efficiency in comparison with attitude to pathogen microorganisms, does not lead to the formation of harmful collateral products. Therefore, the questions of development of safe technologies and means for water preparation and treatment are actual and well timed
Показать больше [+] Меньше [-]Efficacy of ozonated water against various food-related microorganisms
1995
Restaino, L. | Frampton, E.W. | Hemphill, J.B. | Palnikar, P.
The antimicrobial effects of ozonated water in a recirculating concurrent reactor were evaluated against four gram-positive and four gram-negative bacteria, two yeasts, and spores of Aspergillus niger. More than 5 log units each of Salmonella typhimurium and Escherichia coli cells were killed instantaneously in ozonated water with or without addition of 20 ppm of soluble starch (SS). In ozonated water, death rates among the gram-negative bacteria--S. typhimurium, E. coli, Pseudomonas aeruginosa, and Yersinia enterocolitica--were not significantly different (P > 0.05). Among gram-positive bacteria, Listeria monocytogenes was significantly (P < 0.05) more sensitive than either Staphylococcus aureus or Enterococcus faecalis. In the presence of organic material, death rates of S. aureus compared with L. monocytogenes and E. coli compared with S. typhimurium in ozonated water were not significantly (P > 0.05) affected by SS addition but were significantly reduced (P < 0.05) by addition of 20 ppm of bovine serum albumin (BSA). More than 4.5 log units each of Candida albicans and Zygosaccharomyces bailii cells were killed instantaneously in ozonated water, whereas less than 1 log unit of Aspergillus niger spores was killed after a 5-min exposure. The average ozone output levels in the deionized water (0.188 mg/ml) or water with SS (0.198 mg/ml) did not differ significantly (P < 0.05) but were significantly lower in water containing BSA (0.149 mg/ml).
Показать больше [+] Меньше [-]Food processing industry energy and water consumption in the Pacific northwest Полный текст
2018
Compton, Marc | Willis, Sarah | Rezaie, Behnaz | Humes, Karen
The food processing industry is one of the largest consumers of energy and water in the manufacturing sector. It is vital that conservation measures are taken to reduce the use of electricity, fuel, and water for producers to have long-term, sustainable growth. The Pacific Northwest (PNW) region includes some the largest food processers in the United States, particularly with products such as fruit and vegetable preserves, apples products, potato products, and milk. Energy and water consumption in PNW food processing facilities are quantified as well as techniques to increase efficiency and reduce waste. Mechanical drive systems and refrigeration consumes the most electricity in the industry and the implementation of energy management plans has the largest potential to save electricity in PNW facilities. Heating and cooling process needs are the largest consumers of energy in the food processing industry. Implementing cogeneration/trigeneration technology, replacing of older equipment, capturing waste heat, and reusing wastewater can have significant impacts on both energy and water consumption. Novel, emerging technologies such as membrane separation, high-pressure processing, microwave assist, ultrasound, pulsed high electric fields, ozone, and hydrogen/electricity generation have significant potential to benefit the food processing industry by increasing efficiency and allowing companies to stay competitive in an industry where sustainable practices are becoming increasingly important to the public.
Показать больше [+] Меньше [-]Effect of ozonated water sanitization on gasket materials used in fluid food processing
1994
Standard-molded, one piece O-ring food processing plant gaskets (1.5 in or 36.1 mm diameter) made of seven different substances (Buna N, white Buna N, EPDM (ethylene propylene diene monomer), polyethylene, silicone rubber, PTFE (polytetrafluoroethylene or Teflon) and steam-resistant Viton) were treated with chlorine sanitizer or ozonated water. After treatment, only very slight differences were noted visually between control and treated gaskets. Measurements indicated that ozone treatment affected the tensile strength of EPDM and Viton, but not significantly more than chlorine treatment. The tensile strengths of other gasket materials were not significantly affected by ozone treatment. The elasticity of ozone-treated PTFE gaskets was significantly different from chlorine-treated PTFE gaskets. Other gasket materials were not significantly affected by ozone treatment.
Показать больше [+] Меньше [-]Studies on the utilization of ozone for food preservation, 37: Fungi grown on confectionery and ozonated water disinfection
1999
Naito, S. (Aichi-ken. Food Research Inst., Nagoya (Japan))
Cold plasma for mitigating agrochemical and pesticide residue in food and water: Similarities with ozone and ultraviolet technologies Полный текст
2021
Gavahian, Mohsen | Sarangapani, Chaitanya | Misra, N.N.
Pesticide and agrochemical residues in food and water are among hazardous chemicals that are associated with adverse health effects. Consequently, technologies for pesticide abatement in food and water remain in focus. Cold plasma is an emerging decontamination technology, that is being increasingly explored for the abatement of agrochemical and pesticide residue in food and water. In some cases, rapid and complete degradation of pesticide residues has come to light. Such promising results encourage exploring scale-up and commercialization. To achieve this, unraveling mechanisms involved in plasma decontamination and the nature of degradation products is needed. The present review identifies the mechanisms involved in plasma- assisted removal of pesticide residues from food and water, draws parallels with mechanism of ozone and ultraviolet technologies, investigates the chemistry of the intermediates and degradates, and identifies some future research needs. The review recognizes that mechanisms involved in plasma processes have overlapping similarities to those identified for ozone and ultraviolet light, involving oxidation by hydroxyl radical and photo-oxidation. The toxicity of intermediates and degradates in plasma processing have not received much attention. The safety aspects of end products form plasma led degradation of pesticides should be considered for practical exploitation. Identification of intermediates and degradation products, recognition of most potent plasma species, understanding the influence of co-existing entities, the energy efficiency of plasma reactors, and the process economics deserve research focus.
Показать больше [+] Меньше [-]Studies on utilization of ozone in food preservation, 1: Microbial properties of ozone on various microorganisms suspended in water
1982
Naito, S. | Shiga, I. (Aichi-ken. Food Research Inst., Nagoya (Japan))
The Implementation and Food Safety Issues Associated With Poultry Processing Reuse Water for Conventional Poultry Production Systems in the United States Полный текст
2018
Andrew C. Micciche | Kristinia M. Feye | Peter M. Rubinelli | Jennifer A. Wages | Carl J. Knueven | Steven C. Ricke
As human populations increase in numbers, access to clean, fresh water is becoming increasingly difficult to balance between agricultural and municipal demands. Water scarcity is a limiting factor of food production in many countries, whether they are emerging or established economies. In conventional poultry processing systems, access to water is particularly critical for the maintenance and disinfection of processing areas, as well as in processing operations such as scalding, chilling, and carcass washing. Therefore, poultry processing plants use an excessive amount of water, limiting where facilities can operate, increasing overhead costs, and ultimately resulting in potential environmental concerns. The need for sustainable alternatives to single-use water supplies is becoming increasingly more urgent. As a result, the implementation of water reuse in poultry-processing plants has emerged as an attractive alternative means to meet water requirements during processing. Because the water is reused, it is essential to de-contaminate the water with chemicals, such as peracetic acid and chlorine, and improve water filtration strategies to kill and remove potential pathogens and contaminants. However, questions remain as to the efficacy of commonly used disinfectants to achieve that goal. Thus, novel strategies must be developed to improve the capabilities of poultry processing plants to counter water insecurity worldwide. These new stratagems must be economical and enable poultry processing plants to reduce their environmental footprint while meeting new food safety challenges. The current review will focus exclusively on water reuse in conventional poultry processing in the United States. The specific objectives of this review are to discuss the approaches for treating processing water in poultry processing systems, including reuse water systems, as well as investigate possible substitutes for maintaining food safety.
Показать больше [+] Меньше [-]