Resveratrol promotes spherical nano-self-assembly of egg white protein to enhance emulsification performance
2025
Yuxin Kang | Nan Xiao | Haodong Wu | Zhixiong Pan | Weiwei Chen | Minmin Ai
In this paper, using a single-step method, resveratrol (RES)-loaded egg white protein (EWP) nanospheric particles were successfully prepared. The micelle behavior, micromorphology, molecular structure changes, and emulsifying properties of the nanoparticle were analyzed, and the molecular interaction between EWP and RES and the environmental response stability of the nanoparticle was characterized. The results show that I373/I385 dropped from 1.1 to about 0.8, indicating that high concentration of ethanol induced EWP to form a more hydrophobic and less polar structure. RES promoted the uniformity of the nanoparticle and formed a tightly-packed spherical three-dimensional structure by characterizing microstructure. Raman and infrared spectroscopy revealed enhanced hydrogen bonding between EWP and RES, increased g-g-g and t-g-t disulfide bonds, and the formation of three-dimensional helical structures due to the opening of flexible structural intervals. Molecular docking analysis identified hydrogen bonds and hydrophobic interactions as the main forces facilitating the binding between RES and EWP. Particle size analysis showed that D3,2 decreased from 30.51 to 17.88 μm, indicating better emulsion stability. The preservation of RES at 0.4 mg/mL was 94.49% in 50 mM NaCl and 83.68% in 500 mM NaCl, with no significant stability change (p > 0.05) over 48 h, revealing a concentration dependence of salt ions and storage stability of RES in the nanoparticle. This study establishes a foundation for exploring the incorporation of high-value hydrophobic compounds into EWP.
显示更多 [+] 显示较少 [-]