AGRIS - International System for Agricultural Science and Technology

Physics-informed machine learning algorithms for forecasting sediment yield: an analysis of physical consistency, sensitivity, and interpretability

2024

El Bilali, A. | Brouziyne, Youssef | Attar, O. | Lamane, H. | Hadri, A. | Taleb, A.


Bibliographic information
Environmental Science and Pollution Research
Volume 31 ISSN 1614-7499
Publisher
Springer
Other Subjects
Datasets; Sediment transport; Sensitivity analysis
Language
English
License
Limited Access, Copyrighted; all rights reserved
Type
Journal Article
Source
El Bilali, A.; Brouziyne, Youssef; Attar, O.; Lamane, H.; Hadri, A.; Taleb, A. 2024. Physics-informed machine learning algorithms for forecasting sediment yield: an analysis of physical consistency, sensitivity, and interpretability. Environmental Science and Pollution Research, 31(34):47237-47257. [doi: https://doi.org/10.1007/s11356-024-34245-2]

2024-10-31
2024-10-31
MODS
Lookup at Google Scholar
If you notice any incorrect information relating to this record, please contact us at agris@fao.org