AGRIS - Système international des sciences et technologies agricoles

Physics-informed machine learning algorithms for forecasting sediment yield: an analysis of physical consistency, sensitivity, and interpretability

2024

El Bilali, A. | Brouziyne, Youssef | Attar, O. | Lamane, H. | Hadri, A. | Taleb, A.


Informations bibliographiques
Environmental Science and Pollution Research
Volume 31 ISSN 1614-7499
Editeur
Springer
D'autres materias
Datasets; Sediment transport; Sensitivity analysis
Langue
anglais
Licence
Limited Access, Copyrighted; all rights reserved
Type
Journal Article
Source
El Bilali, A.; Brouziyne, Youssef; Attar, O.; Lamane, H.; Hadri, A.; Taleb, A. 2024. Physics-informed machine learning algorithms for forecasting sediment yield: an analysis of physical consistency, sensitivity, and interpretability. Environmental Science and Pollution Research, 31(34):47237-47257. [doi: https://doi.org/10.1007/s11356-024-34245-2]

2024-10-31
2024-10-31
MODS
Consulter Google Scholar
Si vous remarquez des informations incorrectes dans cette référence bibliographique, veuillez nous contacter à l'adresse agris@fao.org