AGRIS — международная информационная система по сельскохозяйственным наукам и технологиям

Physics-informed machine learning algorithms for forecasting sediment yield: an analysis of physical consistency, sensitivity, and interpretability

2024

El Bilali, A. | Brouziyne, Youssef | Attar, O. | Lamane, H. | Hadri, A. | Taleb, A.


Библиографическая информация
Environmental Science and Pollution Research
Том 31 ISSN 1614-7499
Издатель
Springer
Другие темы
Datasets; Sediment transport; Sensitivity analysis
Язык
Английский
Лицензия
Limited Access, Copyrighted; all rights reserved
Тип
Journal Article
Источник
El Bilali, A.; Brouziyne, Youssef; Attar, O.; Lamane, H.; Hadri, A.; Taleb, A. 2024. Physics-informed machine learning algorithms for forecasting sediment yield: an analysis of physical consistency, sensitivity, and interpretability. Environmental Science and Pollution Research, 31(34):47237-47257. [doi: https://doi.org/10.1007/s11356-024-34245-2]

2024-10-31
2024-10-31
MODS
Посмотрите в Google Scholar
If you notice any incorrect information relating to this record, please contact us at agris@fao.org agris@fao.org