AGRIS — международная информационная система по сельскохозяйственным наукам и технологиям

A methodological framework for identifying potential sources of soil heavy metal pollution based on machine learning: A case study in the Yangtze Delta, China

2019

Jia, Xiaolin | Hu, Bifeng | Marchant, Ben P. | Zhou, Lianqing | Shi, Zhou | Zhu, Youwei


Библиографическая информация
Environmental pollution
Том 250 Нумерация страниц 601 - 609 ISSN 0269-7491
Издатель
Elsevier Ltd
Другие темы
Bivariate local moran's i analysis; Potentially polluting enterprises; Heavy metal pollution; Multinomial naive bayesian methods; Source identification; River deltas; Industrial sites
Язык
Английский
Тип
Text; Journal Article

2024-02-29
MODS
Посмотрите в Google Scholar
If you notice any incorrect information relating to this record, please contact us at agris@fao.org agris@fao.org