细化搜索
结果 31-40 的 86
Study on physicochemical properties and antioxidant activities of melanoidins extracted from low thermal induced black Lycium barbarum L. 全文
2024
Junran Chen | Jie Wang | Yaxiao Liu | Haichuan Li | Wenjing Wang | Yue Pan | Yunfeng Hu
Study on physicochemical properties and antioxidant activities of melanoidins extracted from low thermal induced black Lycium barbarum L. 全文
2024
Junran Chen | Jie Wang | Yaxiao Liu | Haichuan Li | Wenjing Wang | Yue Pan | Yunfeng Hu
In this study, static and dynamic desorption methods, infrared spectroscopy and, in vitro antioxidant modeling were used to isolate, purify, and investigate the bioactivity of melanoidins extracted from hypoheat-induced Lycium barbarum L. The results showed that melanoidin fractions with molecular weight in the range of 3−10 kDa were the dominant and most valuable fractions. In the purification phase, the optimal purification conditions were: a loading concentration of 4 mg·mL−1, elution volume of 6 BV, and an elution flow rate of 1 mL·min−1. Purified dominant melanoidin fractions (UF3) exhibited typical Maillard reaction (MR) characteristics in FTIR. The storage stability showed that sunlight and heat treatment exacerbated the instability of the purified UF3. At the same time it was relatively stable under dark conditions and incandescent light, with a retention rate of about 90%. After in vitro digestion, the purified UF3 still exhibited good antioxidant activity, and the DPPH scavenging activity and hydroxyl free radical scavenging ability reached more than 60%.
显示更多 [+] 显示较少 [-]Study on physicochemical properties and antioxidant activities of melanoidins extracted from low thermal induced black Lycium barbarum L. 全文
2024
Junran Chen | Jie Wang | Yaxiao Liu | Haichuan Li | Wenjing Wang | Yue Pan | Yunfeng Hu
In this study, static and dynamic desorption methods, infrared spectroscopy and, in vitro antioxidant modeling were used to isolate, purify, and investigate the bioactivity of melanoidins extracted from hypoheat-induced Lycium barbarum L. The results showed that melanoidin fractions with molecular weight in the range of 3−10 kDa were the dominant and most valuable fractions. In the purification phase, the optimal purification conditions were: a loading concentration of 4 mg·mL−1, elution volume of 6 BV, and an elution flow rate of 1 mL·min−1. Purified dominant melanoidin fractions (UF3) exhibited typical Maillard reaction (MR) characteristics in FTIR. The storage stability showed that sunlight and heat treatment exacerbated the instability of the purified UF3. At the same time it was relatively stable under dark conditions and incandescent light, with a retention rate of about 90%. After in vitro digestion, the purified UF3 still exhibited good antioxidant activity, and the DPPH scavenging activity and hydroxyl free radical scavenging ability reached more than 60%.
显示更多 [+] 显示较少 [-]Malvidin-3-O-galactoside ameliorates colonic mucosal barrier function via the Notch signaling pathway 全文
2024
Chunxue Zhang | Bo Zhang | Lin Zhang | Ahmed Adel Ashour | Yuehua Wang | Ying Zhang | Hui Tan | Li Li | Xinyao Jiao
Malvidin-3-O-galactoside ameliorates colonic mucosal barrier function via the Notch signaling pathway 全文
2024
Chunxue Zhang | Bo Zhang | Lin Zhang | Ahmed Adel Ashour | Yuehua Wang | Ying Zhang | Hui Tan | Li Li | Xinyao Jiao
The colonic mucosal barrier is an important component of the intestinal barrier, and its integrity is crucial for maintaining digestive tract homeostasis and normal metabolism in the body. This study aimed to elucidate the mechanisms by which malvidin-3-O-galactoside (M3G) might ameliorate colonic mucosal barrier function, from the perspective of physical barrier function and immune barrier function. Male C57BL/6J mice were given dextran sulfate sodium (DSS) to establish a mice model for colitis and then administrated with or without M3G for one week. The results showed that M3G supplementation significantly improved the disease activity index (DAI) score and colon tissue injury in mice with DSS-induced colitis. M3G improved the colonic physical barrier function by modulating the expression of mucin2 (MUC2), claudin-1, occludin, zona occludens 1 (ZO-1), and intestinal fatty acid binding protein (iFABP) in the colonic mucosa. Additionally, M3G also relieved the colonic immune barrier of mice by increasing the level of secretory immunoglobulin A (SIgA) in colon tissue and the percentages of CD4+T (CD3+CD4+) and CD8+T (CD3+CD8+) cells in colon lamina propria monocytes in mice. Furthermore, M3G down-regulated Notch signaling pathway-related proteins such as Notch1, notch intracellular domain (NICD), delta-like ligand 4 (DLL4), delta-like ligand 1 (DLL1), and hairy/enhancer of split 1 (Hes1) of colon tissue. The present results demonstrated that M3G can improve colonic mucosal barrier function by inhibiting the Notch signaling pathway.
显示更多 [+] 显示较少 [-]Malvidin-3-O-galactoside ameliorates colonic mucosal barrier function via the Notch signaling pathway 全文
2024
Chunxue Zhang | Bo Zhang | Lin Zhang | Ahmed Adel Ashour | Yuehua Wang | Ying Zhang | Hui Tan | Li Li | Xinyao Jiao
The colonic mucosal barrier is an important component of the intestinal barrier, and its integrity is crucial for maintaining digestive tract homeostasis and normal metabolism in the body. This study aimed to elucidate the mechanisms by which malvidin-3-O-galactoside (M3G) might ameliorate colonic mucosal barrier function, from the perspective of physical barrier function and immune barrier function. Male C57BL/6J mice were given dextran sulfate sodium (DSS) to establish a mice model for colitis and then administrated with or without M3G for one week. The results showed that M3G supplementation significantly improved the disease activity index (DAI) score and colon tissue injury in mice with DSS-induced colitis. M3G improved the colonic physical barrier function by modulating the expression of mucin2 (MUC2), claudin-1, occludin, zona occludens 1 (ZO-1), and intestinal fatty acid binding protein (iFABP) in the colonic mucosa. Additionally, M3G also relieved the colonic immune barrier of mice by increasing the level of secretory immunoglobulin A (SIgA) in colon tissue and the percentages of CD4+T (CD3+CD4+) and CD8+T (CD3+CD8+) cells in colon lamina propria monocytes in mice. Furthermore, M3G down-regulated Notch signaling pathway-related proteins such as Notch1, notch intracellular domain (NICD), delta-like ligand 4 (DLL4), delta-like ligand 1 (DLL1), and hairy/enhancer of split 1 (Hes1) of colon tissue. The present results demonstrated that M3G can improve colonic mucosal barrier function by inhibiting the Notch signaling pathway.
显示更多 [+] 显示较少 [-]Non-methylesterified pectin from pitaya (Hylocereus undatus) fruit peel: optimization of extraction and nanostructural characterization 全文
2024
Yubei Wang | Qiong Fang | Chang Shu | Tingting Zhang | Jiankang Cao
Non-methylesterified pectin from pitaya (Hylocereus undatus) fruit peel: optimization of extraction and nanostructural characterization 全文
2024
Yubei Wang | Qiong Fang | Chang Shu | Tingting Zhang | Jiankang Cao
The peel of pitaya fruit is a promising source of pectin, and non- or low-methylesterified pectin has multiple bioactivities and application scenarios. In this study, non-methylated pectin was prepared from pitaya peel and the structure was characterized. Single factor experiment and response surface methodology were conducted to optimize the procedure of ultrasonic-assisted extraction for pectin. Under the optimal conditions (solid-liquid ratio of 1:40 g·mL−1, extraction temperature at 56 °C, extraction time of 25 min and ultrasonic power of 200 W), the pectin yield was up to 9.93% ± 0.97%. Degree of methylesterification and FTIR analysis confirmed that the extracted pectin was almost non-methylesterified. The pectin possessed less linear homogalacturonan (HG) but more rhamnogalacturonan (RG) regions according to the molar ratios of monosaccharides. Meanwhile, the molecular weight of the pectin was 33.52 kDa and the crystalline index was only 0.60%. Furthermore, the nanoscale structure observed by atomic force microscopy showed that the pectin was rich in highly branched polymers. Generally, pitaya peel pectin extracted by ultrasonic-assisted extraction showed a wide range of potential use as a non-or low- methylesterified pectic substance to reach the efficient utilization of fruit waste.
显示更多 [+] 显示较少 [-]Non-methylesterified pectin from pitaya (Hylocereus undatus) fruit peel: optimization of extraction and nanostructural characterization 全文
2024
Yubei Wang | Qiong Fang | Chang Shu | Tingting Zhang | Jiankang Cao
The peel of pitaya fruit is a promising source of pectin, and non- or low-methylesterified pectin has multiple bioactivities and application scenarios. In this study, non-methylated pectin was prepared from pitaya peel and the structure was characterized. Single factor experiment and response surface methodology were conducted to optimize the procedure of ultrasonic-assisted extraction for pectin. Under the optimal conditions (solid-liquid ratio of 1:40 g·mL−1, extraction temperature at 56 °C, extraction time of 25 min and ultrasonic power of 200 W), the pectin yield was up to 9.93% ± 0.97%. Degree of methylesterification and FTIR analysis confirmed that the extracted pectin was almost non-methylesterified. The pectin possessed less linear homogalacturonan (HG) but more rhamnogalacturonan (RG) regions according to the molar ratios of monosaccharides. Meanwhile, the molecular weight of the pectin was 33.52 kDa and the crystalline index was only 0.60%. Furthermore, the nanoscale structure observed by atomic force microscopy showed that the pectin was rich in highly branched polymers. Generally, pitaya peel pectin extracted by ultrasonic-assisted extraction showed a wide range of potential use as a non-or low- methylesterified pectic substance to reach the efficient utilization of fruit waste.
显示更多 [+] 显示较少 [-]Biological control and other alternatives to chemical fungicides in controlling postharvest disease of fruits caused by Alternaria alternata and Botrytis cinerea 全文
2024
Fredy Agil Raynaldo | Yanqun Xu | Yolandani | Qingqing Wang | Bin Wu | Dong Li
Biological control and other alternatives to chemical fungicides in controlling postharvest disease of fruits caused by Alternaria alternata and Botrytis cinerea 全文
2024
Fredy Agil Raynaldo | Yanqun Xu | Yolandani | Qingqing Wang | Bin Wu | Dong Li
Alternaria alternata and Botrytis cinerea are among the primary fungal pathogens of fruits, causing black spot and gray mold disease, respectively. They cause serious losses in yield as well as affect fruit quality. Controlling fruit postharvest diseases largely relies on the use of chemical fungicides. However, the overuse of fungicides makes the produce unsafe due to their residual effects on the environment and human health. Therefore, significant advancements are necessary to investigate and find sustainable ways to prevent postharvest disease of fruits and minimize postharvest losses. This review summarizes the recent developments in the application of biological control and other sustainable approaches in managing fruit postharvest diseases, with an emphasis on A. alternata and B. cinerea, respectively. Furthermore, several action mechanisms, challenges, and prospects for the application of biological control agents (BCAs) are also discussed. Biological control application has been proven to successfully reduce postharvest disease of fruits caused by A. alternata and B. cinerea. In recent years, it has gradually changed from being primarily an independent field to a more crucial part of integrated pest management. Due to their characteristics that are safe, eco-friendly, and non-toxic, several BCAs have also been developed and commercialized. Therefore, biological control has the potential to be a promising approach to replace the use of chemical fungicides in controlling postharvest disease of fruits.
显示更多 [+] 显示较少 [-]Biological control and other alternatives to chemical fungicides in controlling postharvest disease of fruits caused by Alternaria alternata and Botrytis cinerea 全文
2024
Fredy Agil Raynaldo | Yanqun Xu | Yolandani | Qingqing Wang | Bin Wu | Dong Li
Alternaria alternata and Botrytis cinerea are among the primary fungal pathogens of fruits, causing black spot and gray mold disease, respectively. They cause serious losses in yield as well as affect fruit quality. Controlling fruit postharvest diseases largely relies on the use of chemical fungicides. However, the overuse of fungicides makes the produce unsafe due to their residual effects on the environment and human health. Therefore, significant advancements are necessary to investigate and find sustainable ways to prevent postharvest disease of fruits and minimize postharvest losses. This review summarizes the recent developments in the application of biological control and other sustainable approaches in managing fruit postharvest diseases, with an emphasis on A. alternata and B. cinerea, respectively. Furthermore, several action mechanisms, challenges, and prospects for the application of biological control agents (BCAs) are also discussed. Biological control application has been proven to successfully reduce postharvest disease of fruits caused by A. alternata and B. cinerea. In recent years, it has gradually changed from being primarily an independent field to a more crucial part of integrated pest management. Due to their characteristics that are safe, eco-friendly, and non-toxic, several BCAs have also been developed and commercialized. Therefore, biological control has the potential to be a promising approach to replace the use of chemical fungicides in controlling postharvest disease of fruits.
显示更多 [+] 显示较少 [-]Transcriptomics and metabolomics reveal major quality regulations during melon fruit development and ripening 全文
2024
Xupeng Shao | Fengjuan Liu | Qi Shen | Weizhong He | Binxin Jia | Yingying Fan | Cheng Wang | Fengzhong Wang
Transcriptomics and metabolomics reveal major quality regulations during melon fruit development and ripening 全文
2024
Xupeng Shao | Fengjuan Liu | Qi Shen | Weizhong He | Binxin Jia | Yingying Fan | Cheng Wang | Fengzhong Wang
Studying the metabolic patterns underlying the key quality traits during the growth and development of melon is very important for the quality improvement and breeding of melon fruit. In this study, we employed transcriptomics and metabolomics to analyze the primary metabolic changes occurring in melon ('Xizhoumi 25') across five growth and development stages. We identified a total of 666 metabolites and their co-expressed genes, which were categorized into five different metabolic and gene modules. Through the analysis of these modules, the main metabolic pathways during the growth and development of melon were demonstrated from a global perspective. We also discussed the contribution of sucrose accumulation, the TCA cycle, and amino acid metabolism to the quality and flavor of melon. Enzymes related to amino acid metabolism were proposed, including Amine oxidase (AOC), aldehyde dehydrogenase (ALDH), tryptophan synthase (TRPB), etc. These results and data can provide new insights for further study on the metabolic regulation of melon quality and improve fruit quality.
显示更多 [+] 显示较少 [-]Transcriptomics and metabolomics reveal major quality regulations during melon fruit development and ripening 全文
2024
Xupeng Shao | Fengjuan Liu | Qi Shen | Weizhong He | Binxin Jia | Yingying Fan | Cheng Wang | Fengzhong Wang
Studying the metabolic patterns underlying the key quality traits during the growth and development of melon is very important for the quality improvement and breeding of melon fruit. In this study, we employed transcriptomics and metabolomics to analyze the primary metabolic changes occurring in melon ('Xizhoumi 25') across five growth and development stages. We identified a total of 666 metabolites and their co-expressed genes, which were categorized into five different metabolic and gene modules. Through the analysis of these modules, the main metabolic pathways during the growth and development of melon were demonstrated from a global perspective. We also discussed the contribution of sucrose accumulation, the TCA cycle, and amino acid metabolism to the quality and flavor of melon. Enzymes related to amino acid metabolism were proposed, including Amine oxidase (AOC), aldehyde dehydrogenase (ALDH), tryptophan synthase (TRPB), etc. These results and data can provide new insights for further study on the metabolic regulation of melon quality and improve fruit quality.
显示更多 [+] 显示较少 [-]Gastrointestinal digestion fate of Tremella fuciformis polysaccharide and its effect on intestinal flora: an in vitro digestion and fecal fermentation study 全文
2024
Xiangyang Zhu | Jing Su | Lan Zhang | Fan Si | Dapeng Li | Yang Jiang | Chen Zhang
Gastrointestinal digestion fate of Tremella fuciformis polysaccharide and its effect on intestinal flora: an in vitro digestion and fecal fermentation study 全文
2024
Xiangyang Zhu | Jing Su | Lan Zhang | Fan Si | Dapeng Li | Yang Jiang | Chen Zhang
In this work, the gastrointestinal digestive outcome of Tremella fuciformis polysaccharide (TFP) was examined using in vitro simulated experiments, together with its effect on the intestinal microbiota. TFP did not significantly alter during the stage of oral digestion, according to an in vitro digestion investigation. Nevertheless, glycosidic connections of TFP were broken throughout the intestinal and stomach digesting phases, which resulted in the dissociation of macromolecular aggregates, a marked rise in decreasing sugar content (CR), as well as a drop in molecular weight (Mw). Additionally, microbial community analysis following fecal fermentation in vitro indicated that TFP might control the alpha and beta diversity of gut microbiota and change the genus- and phylum-level community composition. It increased the abundance of beneficial bacteria including Megasphaera, Phascolarctobacterium, and Bacteroides, and suppressed the growth of harmful bacteria like Escherichia-shigella and Fusobacterium, thus contributing to maintaining gut homeostasis. These results suggested that TFP could have a positive impact on health through enhancing the gut microbiota environment, giving a theoretical basis for its use as a prebiotic.
显示更多 [+] 显示较少 [-]Gastrointestinal digestion fate of Tremella fuciformis polysaccharide and its effect on intestinal flora: an in vitro digestion and fecal fermentation study 全文
2024
Xiangyang Zhu | Jing Su | Lan Zhang | Fan Si | Dapeng Li | Yang Jiang | Chen Zhang
In this work, the gastrointestinal digestive outcome of Tremella fuciformis polysaccharide (TFP) was examined using in vitro simulated experiments, together with its effect on the intestinal microbiota. TFP did not significantly alter during the stage of oral digestion, according to an in vitro digestion investigation. Nevertheless, glycosidic connections of TFP were broken throughout the intestinal and stomach digesting phases, which resulted in the dissociation of macromolecular aggregates, a marked rise in decreasing sugar content (CR), as well as a drop in molecular weight (Mw). Additionally, microbial community analysis following fecal fermentation in vitro indicated that TFP might control the alpha and beta diversity of gut microbiota and change the genus- and phylum-level community composition. It increased the abundance of beneficial bacteria including Megasphaera, Phascolarctobacterium, and Bacteroides, and suppressed the growth of harmful bacteria like Escherichia-shigella and Fusobacterium, thus contributing to maintaining gut homeostasis. These results suggested that TFP could have a positive impact on health through enhancing the gut microbiota environment, giving a theoretical basis for its use as a prebiotic.
显示更多 [+] 显示较少 [-]β-ionone prevents dextran sulfate sodium-induced ulcerative colitis and modulates gut microbiota in mice 全文
2024
Jingjing Fang | Tingting Liu | Yumeng Wang | Seong-Gook Kang | Kunlun Huang | Tao Tong
β-ionone prevents dextran sulfate sodium-induced ulcerative colitis and modulates gut microbiota in mice 全文
2024
Jingjing Fang | Tingting Liu | Yumeng Wang | Seong-Gook Kang | Kunlun Huang | Tao Tong
β-ionone has various biological activities, such as anti-inflammatory, antimicrobial, and anticancer effects. The pathogenesis of ulcerative colitis is correlated with immune dysfunction, intestinal barrier damage, and gut microbiota imbalance. However, whether β-ionone has preventive efficacy against ulcerative colitis is unknown. This study investigated the effect of β-ionone on dextran sulfate sodium-induced ulcerative colitis and the underlying molecular mechanisms involved. The ulcerative colitis mouse model was induced by 1.5% dextran sulfate sodium for 10 d. Meanwhile, 200 mg/kg β-ionone was administrated to the mice. Body weight, colon length, colon tissue pathology, colon tissue inflammatory cytokines, colonic oxidative stress, and barrier function were assessed. The composition and structure of gut microbiota were profiled using 16S rRNA sequencing. The results showed that β-ionone supplementation effectively prevented ulcerative colitis by ameliorating colonic tissue damage, reducing inflammatory phenomena, and protecting the colonic epithelial mucosal barrier. β-ionone also protected mice from dextran sulfate sodium-induced gut microbiota disturbance by modifying the overall structure and function of the gut microbiota community and increasing the relative abundance of beneficial gut microbiota. The Spearman correlation analysis revealed that the changes in abundance of the gut microbiota were correlated with ulcerative colitis-related indicators. Overall, this study demonstrated that β-ionone has a preventive effect on ulcerative colitis in mice, and the underlying mechanism may be associated with the protection of the gut barrier and regulation of the gut microbiota. These results are conducive to promoting clinical trials and product development of β-ionone for the prevention and treatment of ulcerative colitis.
显示更多 [+] 显示较少 [-]β-ionone prevents dextran sulfate sodium-induced ulcerative colitis and modulates gut microbiota in mice 全文
2024
Jingjing Fang | Tingting Liu | Yumeng Wang | Seong-Gook Kang | Kunlun Huang | Tao Tong
β-ionone has various biological activities, such as anti-inflammatory, antimicrobial, and anticancer effects. The pathogenesis of ulcerative colitis is correlated with immune dysfunction, intestinal barrier damage, and gut microbiota imbalance. However, whether β-ionone has preventive efficacy against ulcerative colitis is unknown. This study investigated the effect of β-ionone on dextran sulfate sodium-induced ulcerative colitis and the underlying molecular mechanisms involved. The ulcerative colitis mouse model was induced by 1.5% dextran sulfate sodium for 10 d. Meanwhile, 200 mg/kg β-ionone was administrated to the mice. Body weight, colon length, colon tissue pathology, colon tissue inflammatory cytokines, colonic oxidative stress, and barrier function were assessed. The composition and structure of gut microbiota were profiled using 16S rRNA sequencing. The results showed that β-ionone supplementation effectively prevented ulcerative colitis by ameliorating colonic tissue damage, reducing inflammatory phenomena, and protecting the colonic epithelial mucosal barrier. β-ionone also protected mice from dextran sulfate sodium-induced gut microbiota disturbance by modifying the overall structure and function of the gut microbiota community and increasing the relative abundance of beneficial gut microbiota. The Spearman correlation analysis revealed that the changes in abundance of the gut microbiota were correlated with ulcerative colitis-related indicators. Overall, this study demonstrated that β-ionone has a preventive effect on ulcerative colitis in mice, and the underlying mechanism may be associated with the protection of the gut barrier and regulation of the gut microbiota. These results are conducive to promoting clinical trials and product development of β-ionone for the prevention and treatment of ulcerative colitis.
显示更多 [+] 显示较少 [-]Microbial enzymes: the bridge between Daqu flavor and microbial communities 全文
2024
Zelong Zhong | Tianyi Liu | Kaiping He | Min Zhong | Xiaoxue Chen | Yansong Xue | Beizhong Han | Diqiang Wang | Jun Liu
Microbial enzymes: the bridge between Daqu flavor and microbial communities 全文
2024
Zelong Zhong | Tianyi Liu | Kaiping He | Min Zhong | Xiaoxue Chen | Yansong Xue | Beizhong Han | Diqiang Wang | Jun Liu
Baijiu Daqu, a traditional component in the Baijiu brewing process, serves as both a 'saccharifying fermenting agent' and an 'aroma-producing catalyst', embodying a rich historical legacy. Daqu offers a diverse microorganism environment that is crucial for the fermentation of Baijiu. The distinctive flavor profile, a key attribute of Baijiu, is intricately linked to the microflora present in Daqu. To date, research on Daqu has primarily concentrated on the diversity of microbial communities, microbial interactions, flavor characteristics, and biochemical properties. The functional enzyme system in Daqu serves as a crucial link connecting the flavor of Baijiu with the microbial community of Daqu. However, reviews that particularly focus on the role of enzymes in determining the quality of Daqu have not yet been reported. Thus, here the types and production processes of Daqu are initially summarized. Then, the pathways involved in the production of the major flavor substances in Daqu are elucidated, as well as the role and contribution of different functional enzymes in the formation of Daqu flavor. Finally, the current technologies for improving Daqu flavor through microbial inoculation aree discussed, including the advantages, shortcomings, and bottlenecks of microbial inoculation. The findings gained in this study provide valuable information for the efficient production of high-quality Daqu for the brewing of Baijiu.
显示更多 [+] 显示较少 [-]Microbial enzymes: the bridge between Daqu flavor and microbial communities 全文
2024
Zelong Zhong | Tianyi Liu | Kaiping He | Min Zhong | Xiaoxue Chen | Yansong Xue | Beizhong Han | Diqiang Wang | Jun Liu
Baijiu Daqu, a traditional component in the Baijiu brewing process, serves as both a 'saccharifying fermenting agent' and an 'aroma-producing catalyst', embodying a rich historical legacy. Daqu offers a diverse microorganism environment that is crucial for the fermentation of Baijiu. The distinctive flavor profile, a key attribute of Baijiu, is intricately linked to the microflora present in Daqu. To date, research on Daqu has primarily concentrated on the diversity of microbial communities, microbial interactions, flavor characteristics, and biochemical properties. The functional enzyme system in Daqu serves as a crucial link connecting the flavor of Baijiu with the microbial community of Daqu. However, reviews that particularly focus on the role of enzymes in determining the quality of Daqu have not yet been reported. Thus, here the types and production processes of Daqu are initially summarized. Then, the pathways involved in the production of the major flavor substances in Daqu are elucidated, as well as the role and contribution of different functional enzymes in the formation of Daqu flavor. Finally, the current technologies for improving Daqu flavor through microbial inoculation aree discussed, including the advantages, shortcomings, and bottlenecks of microbial inoculation. The findings gained in this study provide valuable information for the efficient production of high-quality Daqu for the brewing of Baijiu.
显示更多 [+] 显示较少 [-]Infrared guided smart food formulation: an innovative spectral reconstruction strategy to develop anticipated and constant apple puree products 全文
2024
Zhenjie Wang | Sylvie Bureau | Benoit Jaillais | Catherine M. G. C. Renard | Xiao Chen | Yali Sun | Daizhu Lv | Leiqing Pan | Weijie Lan
Infrared guided smart food formulation: an innovative spectral reconstruction strategy to develop anticipated and constant apple puree products 全文
2024
Zhenjie Wang | Sylvie Bureau | Benoit Jaillais | Catherine M. G. C. Renard | Xiao Chen | Yali Sun | Daizhu Lv | Leiqing Pan | Weijie Lan
An innovative chemometric method was developed to exploit visible and near-infrared (Vis-NIR) spectroscopy to guide food formulation to reach the anticipated and constant quality of final products. First, a total of 671 spectral variables related to the puree quality characteristics were identified by spectral variable selection methods. Second, the concentration profiles from multivariate curve resolution-alternative least squares (MCR-ALS) made it possible to reconstruct the identified spectral variables of formulated purees. Partial least square based on the reconstructed Vis-NIR spectral variables was evidenced to predict the final puree quality, such as a* values (RPD = 3.30), total sugars (RPD = 2.64), titratable acidity (RPD = 2.55) and malic acid (RPD = 2.67), based only on the spectral data of composed puree cultivars. These results open the possibility of controlling puree formulation: a multiparameter optimization of the color and taste of final puree products can be obtained using only the Vis-NIR spectral data of single-cultivar purees.
显示更多 [+] 显示较少 [-]Infrared guided smart food formulation: an innovative spectral reconstruction strategy to develop anticipated and constant apple puree products 全文
2024
Wang, Zhenjie | Bureau, Sylvie | Jaillais, Benoit | Renard, Catherine, M.G.C. | Chen, Xiao | Sun, Yali | Lv, Daizhu | Pan, Leiqing | Lan, Weijie | Nanjing Agricultural University (NAU) | Sécurité et Qualité des Produits d'Origine Végétale (SQPOV) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS) | Statistique, Sensométrie et Chimiométrie (StatSC) ; École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Département Aliments, produits biosourcés et déchets - INRAE (TRANSFORM) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Sécurité et Qualité des Produits d'Origine Végétale (SQPOV) ; Institut National de la Recherche Agronomique (INRA)-Avignon Université (AU) | Chinese Academy of Tropical Agricultural Sciences (CATAS) | This work was supported by the 'Interfaces' project, an Agropolis Foundation Flashship project publicly funded through the ANR (French Research Agency) under the 'Investissements d'Avenir' program ( Labex Agro, coordinated by Agropolis Fondation), the National Natural Science Foundation of China (NSFC,32302204), and Research Startup Foundation (ANR-10-LABX-01-001) Nanjing Agricultural University (No. 804120).
International audience | An innovative chemometric method was developed to exploit visible and near-infrared (Vis-NIR) spectroscopy to guide food formulation to reach the anticipated and constant quality of final products. First, a total of 671 spectral variables related to the puree quality characteristics were identified by spectral variable selection methods. Second, the concentration profiles from multivariate curve resolution-alternative least squares (MCR-ALS) made it possible to reconstruct the identified spectral variables of formulated purees. Partial least square based on the reconstructed Vis-NIR spectral variables was evidenced to predict the final puree quality, such as a* values (RPD = 3.30), total sugars (RPD = 2.64), titratable acidity (RPD = 2.55) and malic acid (RPD = 2.67), based only on the spectral data of composed puree cultivars. These results open the possibility of controlling puree formulation: a multiparameter optimization of the color and taste of final puree products can be obtained using only the VisNIR spectral data of single-cultivar purees.
显示更多 [+] 显示较少 [-]Infrared guided smart food formulation: an innovative spectral reconstruction strategy to develop anticipated and constant apple puree products 全文
2024
Zhenjie Wang | Sylvie Bureau | Benoit Jaillais | Catherine M. G. C. Renard | Xiao Chen | Yali Sun | Daizhu Lv | Leiqing Pan | Weijie Lan
An innovative chemometric method was developed to exploit visible and near-infrared (Vis-NIR) spectroscopy to guide food formulation to reach the anticipated and constant quality of final products. First, a total of 671 spectral variables related to the puree quality characteristics were identified by spectral variable selection methods. Second, the concentration profiles from multivariate curve resolution-alternative least squares (MCR-ALS) made it possible to reconstruct the identified spectral variables of formulated purees. Partial least square based on the reconstructed Vis-NIR spectral variables was evidenced to predict the final puree quality, such as a* values (RPD = 3.30), total sugars (RPD = 2.64), titratable acidity (RPD = 2.55) and malic acid (RPD = 2.67), based only on the spectral data of composed puree cultivars. These results open the possibility of controlling puree formulation: a multiparameter optimization of the color and taste of final puree products can be obtained using only the Vis-NIR spectral data of single-cultivar purees.
显示更多 [+] 显示较少 [-]Optimisation of vibrational spectroscopy instruments and pre-processing for classification problems across various decision parameters 全文
2024
Joy Sim | Cushla McGoverin | Indrawati Oey | Russell Frew | Biniam Kebede
Optimisation of vibrational spectroscopy instruments and pre-processing for classification problems across various decision parameters 全文
2024
Joy Sim | Cushla McGoverin | Indrawati Oey | Russell Frew | Biniam Kebede
Vibrational spectroscopy is a green, rapid, and affordable analytical tool for analysing the quality, safety, and origin of biological materials in agri-food sectors. Pre-processing spectral data is crucial to removing instrumental interferences and physical artifacts when developing a classification model. However, there has yet to be a consensus on which spectral pre-processing method, settings, and decision parameters to use to optimise pre-processing for different spectroscopy tools. Using an arbitrary criterion poses a risk of applying the wrong type or too severe pre-processing that removes valuable information or affects the model's performance for prediction studies. Matthew's Correlation Coefficient (MCC) - a statistic for parameterising classification performance, accounts for data set imbalance and improved decisions on model selection to express uncertainty on future predictions. Four vibrational spectroscopy instruments [near-infrared (NIR), hyperspectral (HSI), mid-infrared (FTIR), and Raman] were compared using different pre-processing methods to understand the performance using MCC to classify coffee from four countries (Indonesia, Ethiopia, Brazil and Rwanda). Key decision parameters were evaluated for the development of reliable classification models. The best pre-processing for NIR was extended multiplicative scatter correction with mean centering (MNCN), and for HSI, Savitzky-Golay (1st derivative, 15 points) with MNCN. NIR performed the best across all four instruments, with FTIR performing the worst. Raman showed potential for coffee origin classification using the right pre-processing. Pre-processing with weighted least squares, normalisation, and MNCN eliminated the fluorescence effect on Raman spectral data. These findings show the feasibility of using MCC for classification problems.
显示更多 [+] 显示较少 [-]Optimisation of vibrational spectroscopy instruments and pre-processing for classification problems across various decision parameters 全文
2024
Joy Sim | Cushla McGoverin | Indrawati Oey | Russell Frew | Biniam Kebede
Vibrational spectroscopy is a green, rapid, and affordable analytical tool for analysing the quality, safety, and origin of biological materials in agri-food sectors. Pre-processing spectral data is crucial to removing instrumental interferences and physical artifacts when developing a classification model. However, there has yet to be a consensus on which spectral pre-processing method, settings, and decision parameters to use to optimise pre-processing for different spectroscopy tools. Using an arbitrary criterion poses a risk of applying the wrong type or too severe pre-processing that removes valuable information or affects the model's performance for prediction studies. Matthew's Correlation Coefficient (MCC) - a statistic for parameterising classification performance, accounts for data set imbalance and improved decisions on model selection to express uncertainty on future predictions. Four vibrational spectroscopy instruments [near-infrared (NIR), hyperspectral (HSI), mid-infrared (FTIR), and Raman] were compared using different pre-processing methods to understand the performance using MCC to classify coffee from four countries (Indonesia, Ethiopia, Brazil and Rwanda). Key decision parameters were evaluated for the development of reliable classification models. The best pre-processing for NIR was extended multiplicative scatter correction with mean centering (MNCN), and for HSI, Savitzky-Golay (1st derivative, 15 points) with MNCN. NIR performed the best across all four instruments, with FTIR performing the worst. Raman showed potential for coffee origin classification using the right pre-processing. Pre-processing with weighted least squares, normalisation, and MNCN eliminated the fluorescence effect on Raman spectral data. These findings show the feasibility of using MCC for classification problems.
显示更多 [+] 显示较少 [-]